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Content of the Lecture

Why performance optimization?

Short introduction to computer architecture and
performance problems

Performance optimization.

Libraries and expression templates.

Finite differences, iterative solvers.

Introduction to parallelization.

Debugging.

Finite difference discretizations, stability

Ray tracing
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Simulation in Fluid Dynamics

Assume that we want to compute the flow of water in a
hydroelectric power plant.
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Simulation in Fluid Dynamics

It is impossible to compute the flow exactly.

We have to compute an approximate solution on a
discretization grid.

Example of a 2D discretization grid:

kx grid points

ky grid points

h
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Simulation in Fluid Dynamics

kx grid points

ky grid points

h

In 3D, O(kx ∗ ky ∗ kz) data and
O(kx ∗ ky ∗ kz ∗ kt) floating-point operations are needed.

Example: kx = ky = kz = 200 and kt = 10000.
This leads to: kx ∗ ky ∗ kz = 8 ∗ 106 data and
kx ∗ ky ∗ kz ∗ kt = 8 ∗ 1010 operations.
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Problems in Computer Architecture

Due to technical reasons the clock rate cannot be
arbitrary high.

In the last years the CPU performance (clock rate, ...) of
processors increased more than the performance of
memory (bandwidth, ...).

– p. 6/249



Latency and Bandwidth

Definition 1 (Latency and bandwidth, access time).

The latency L is the time needed until the execution of an
instruction can start.

The execution of every instruction needs a certain computational
time.

The bandwidth B is the maximum speed of message transfer in
Mbyte/sec (or Gbps) for an infinitely large message.
Thus, the time T for sending a message of size M is:

T = L+M/B.

The time for reading a certain amount of data from memory is often
called access time .
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Fundamental Architecture of a Computer

main memory

cache

register

CPU

The performance depends on:

latency and bandwidth or
access time of the
memories and

the latency and execution
time of instructions of the
CPU.

pipeline concepts and
parallelization on
instruction level of
the processor.
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Pipeline Concept of a Processor

FETCH

instructions

DECODE

instructions

COMPUTATION

and/or

LOAD / STORE

of data

data

WRITE

1 cycle 1 cycle 1 cycle2 cycle

−→ latency of a single instruction: 2 cycles
The latency of several instructions can be reduced by a
pipeline concept.
Example 1.
AMD Opteron: 15 pipeline stages
Intel Nehalem: 16 pipeline stages
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Pipeline Concept of a Processor

FETCH 1 FETCH 2 FETCH 3 FETCH 4 FETCH 5

DECODE 1 DECODE 2 DECODE 3 DECODE 4

COMPUTE 1 COMPUTE 2 COMPUTE 3

COMPUTE 1 COMPUTE 2

WRITE 1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

−→ reduction of the latency by parallel computations in a pipeline
concept.
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Bypassing

Example: Computation of x ∗ (a+ b).
By a “bypassing concept”, the result of a+ b can be used
directly after computing it for a multiplication with x.
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Fusion of Multiply and Add

Example: Computation of x ∗ a+ b.
Several processors are able to compute one multiplication
and one addition by one instruction.
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Parallel Computations in a Processor

Modern processors are able to perform several instructions
in parallel. This can be obtained by

superscalar processors and

VLIW processors ( very long instruction word)
e.g. EPIC-concept
(Explicitly Parallel Instruction Computing)

Example 2.

superscalar processors: usually:
2 floating point operations and 2 integer operations and
1 read or write of data.

Itanium 2: EPIC

Radeon R600: GPU
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Stalls of Pipeline-Processes

If a pipeline cannot accept a new instruction at a certain
stage, than this is called “stalled”. There exist several
reasons for this. One is that certain data are needed which
are not contained in registers. Another may be that a
previous computation has to end until the new computation
can be performed.
−→ This increases the latency time.
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Access Time of Data

main memory

e.g. maximal 4GByte

cache
e.g. 32kByte or 3MByte

register
e.g. 32

CPU

access time: 0 cycles

access time: 3 cycles

access time: 32 cycles
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Cache Sizes

The cache consists of several parts of different sizes.
A large cache implies a higher access time .

:
Itanium 2 cache

access time 1
L1: 16 KB

access time 5+

L2: 256 KB

access time 12+

L3: 3MB
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Blocks in Memories

1 2 3 4 5 6 7 8 9 10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32

memory

block number

fully associative
block 11 can
go anywhere

direct mapped
block 11 goes to
3 = 11 mod 8

set associative (4 sets)
block 11 can
go anywhere in set 3

set
0

set
1

set
2

set
3

block number
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

block number
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Example: Intel ’Nehalem’ Architektur

Nehalem L1 L2 L3

size 32KB 256 KB 2MB
line size 64 128 128

number of lines 512 2048 16,384
associative sets 64 256 1024

associative 8-way 8-way 16-way
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Example: Itanium 2

Itanium 2 L1 L2 L3

size 16KB 256 KB 3MB
line size 64 128 128

number of lines 256 2048 24,576
associative sets 4 8 12

associative 64-way 256-way 2048-way
update policy write write write

through back back
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Example: IBM Power 3

IBM Power 3 L1 L2

size 65KB 4MB
line size 128 128

number of lines
associative sets

associative 128-way direct mapped
update policy write write

through back
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Cache Misses

Compulsory cache misses:
Every data have to be fetched a first time to the cash.
These cash misses cannot be avoided.

Capacity cache misses: Every cache has a maximal
size. Therefore it might happen, that a cash line was
overwritten by another cash line.

Conflict cache misses: If the cache is a directly mapped
or set associative cache, then it may happen, that the
cache cannot completely be used. Thus, cache lines
will be overwritten, however there are free cache lines.
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Common Subexpression Elimination

Instead of
q = a+b+c;
p = a+b+d;

the compiler evaluates
t = a+b;
q = t+c;
p = t+d;

– p. 22/249



Loop-Invariant Code Motion

The compiler optimizes
for(i=0;i<n;++i)

a[i] = r * s+b[i];
by

t = r * s;
for(i=0;i<n;++i)

a[i] = t+b[i];
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Evaluation of Constants

The compiler optimizes
x = 3 * 4.0 + y;

by
x = 12.0 + y;

−→ Optimization by meta-programming in C++!
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Strength Reduction

For an integer i the compiler replaces
2* i

by
i+i

In FORTRAN, the compiler replaces
x** 2

by
x* x
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Instruction Scheduling

Instead of
a = b+c;
d = 2.0 * a+e;
g = 2.0 * c;
q = g+b * 2.0;

the compiler could evaluate
a = b+c;
g = 2.0 * c;
d = 2.0 * a+e;
q = g+b * 2.0;

and try to optimize the use of the registers. This is a very
complex optimization problem.
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Performance Optimization: Mult-Add

Several processors perform a+b* c as fast as one
multiplication. Thus,

a = b+c * d+f * g;
often is faster than

a = f * g+c * d+b;
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Eliminating Overheads

There exist a lot of ways to avoid overheads.
A simple example is the following. Replace

if(sqrt(tt) < eps) { ... }
by

if(tt < eps * eps) { ... }
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Loop Unrolling

Loop unrolling is the general concept to improve performance!

Instead

for(int i=0;i<n * m;++i) Comp(i);

perform

for(int i=0;i<m * n;i=i+n)

for(int j=0;j<n;j=j+1) Comp(i+j);

or

for(int i=0;i<m * n;i=i+n) {

Comp(i+0);

Comp(i+1);

...

Comp(i+n-1); }

Perform additional changes of the computations in the interior loop!
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Loop Unrolling

Loop unrolling can optimize the performance of a code by

software pipelining

instruction parallelization

improvement of the memory access.

– p. 30/249



Instruction-Parallelization

10000 1e+05 1e+06

1e-05

0.0001

0.001

inst 1
inst 2
inst 3
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Pentium 4 - Vectorization

The Pentium 4 architecture allows two floating point
instructions per cycle by SSE2 floating point instructions.
Using the option -xW for the Intel-Compiler this leads to a
so called “vectorization”. For example the compiler shows
the output:
cpc -O3 -xW -c main.cc
main.cc(32) : (col. 3) remark: LOOP WAS VECTORIZED.
main.cc(84) : (col. 5) remark: LOOP WAS VECTORIZED.
icpc -O3 -xW -o run main.o -lm

– p. 32/249



Pentium 4 - Vectorization

for(i=0;i<n;++i)
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Pentium 4 - Vectorization

for(i=0;i<n;++i)
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Improvement of Memory Access

0 5000 10000 15000 20000

0.001

0.01

0.1

unrolling 1
unrolling 2
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Automatic Loop Unrolling

Loop unrolling is often automatically performed by the
compiler. But in some cases it is impossible for the compiler
to unroll a loop. An example is:

sum = 0.0;
for(int i=0;i<n;i=i+1)

for(int j=0;j<n;j=j+1) {
sum = sum + x[i][j] * (i * i + j * j);

}
By hand it is possible to do a loop unrolling with respect to i
and j.
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Limit of Loop Unrolling

There is a limit for the size of loop unrolling. This limit is
caused by

a limited number of registers and

overhead caused by too small loops and a loop length,
which is not a multiple of the size of the interior loop.
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Optimization of Memory Access

−→ Optimization of memory access is very important in
HPC!

The general rule is:
−→ Optimize data locality!
This means compute with data from cache!
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Example in FORTRAN

dimension a(n,n),b(n,n)
LOOP A
do 10,i=1,n
do 10,j=1,n

10 a(i,j)=b(i,j) * b(i,j)+1.
and

dimension a(n,n),b(n,n)
LOOP B
do 10,j=1,n
do 10,i=1,n

10 a(i,j)=b(i,j) * b(i,j)+1.
Which version is faster?
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Example in C

double a[n][n], b[n][n];
// LOOP A
for(i=0;i<n;++i)

for(j=0;j<n;++j)
a[i][j]=b[i][j] * b[i][j]+1.0;

and
double a[n][n], b[n][n];
// LOOP B
for(j=0;j<n;++j)

for(i=0;i<n;++i)
a[i][j]=b[i][j] * b[i][j]+1.0;

Now, loop A is faster!
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Dynamic Memory Allocation C++

double ** a, ** b;
a = new double * [n];
b = new double * [n];
for(i=0;i<n;++i) {

a[i] = new double[n];
b[i] = new double[n];

}

// LOOP C
for(i=0;i<n;++i)

for(j=0;j<n;++j)
a[i][j]=b[i][j] * b[i][j]+1.0;

Now, the data of a are cut in several pieces. This leads to
less data locality and optimizations as vectorization cannot
be performed in an optimal way.
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Efficient Dynamic Memory Allocation

The following code leads to a better data allocation:
double * a, * b;
a = new double[n * n];
b = new double[n * n];

// LOOP C
for(i=0;i<n;++i)

for(j=0;j<n;++j)
a[i * n+j]=b[i * n+j] * b[i * n+j]+1.0;

Using such a data structure, an optimal performance can
be obtained on vector machines.

– p. 42/249



Loop Fusion

Consider the follwing code.
Instead of

for(i=0;i<n;++i)
u[i] = u[i] + tau * g[i];

for(i=0;i<n;++i)
r[i] = b[i] + alpha * g[i];

implement
for(i=0;i<n;++i) {

u[i] = u[i] + tau * g[i];
r[i] = b[i] + alpha * g[i];

}
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Data Layout

Construct a data layout such that the computations can be
done locally.
As an example consider the coordinates of particles. In
FORTRAN write

dimension r(3,n)
instead of

dimension rx(n), ry(n), rz(n)
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Blocking

Blocking is similar to loop unrolling. Consider the matrix transposition

dimension a(n,n),b(n,n)

LOOP A

do 10,i=1,n

do 10,j=1,n

10 b(i,j)=a(j,i)
Subdivide the index set

(1, 1) ... (1, n)
... ...

...

(n, 1) ... (n, n)

in small blocks of size s ∗ s:

(k1, k2) ... (k1, k2 + s)
... ...

...

(k1 + s, k2) ... (k1 + s, k2 + s)

Then, perform the matrix transposition on each of these blocks.
The size of the cache must be larger than 2 ∗ s ∗ s.
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Automatic Optimization

Compilers try to perform an automatic optimization. In
particular, FORTRAN compilers are able to optimize a code
by loop unrolling and automatic instruction parallelization.
Using C or C++, there is a problem with aliasing.
Let us consider the program
void f(double * a,double * b,double * c,double * d){

for(int i=0;i<n;++i)
a[i] = b[i] + c[i] * d[i];

} }
Then, the C compiler does not know whether b[i] and
a[i-1] point to the same value or not. Therefore, some
compilers cannot perform an automatic optimization in this
case.
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Keyword restrict

To avoid the problem with aliasing some compilers support
the keyword restrict or restrict for pointers as
follows:

double * restrict a;
double * restrict b;
double * restrict c;
double * restrict d;

for(int i=0;i<n;++i)
a[i] = b[i] + c[i] * d[i];

}
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Shared Memory Computer Architecture

Crossbar

memory

proc 2proc 1 proc 3 proc 4
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Parallelization with OpenMP

The parallelization with OpenMP is based on

threads

the usage of pragmas like # pragma omp parallel for
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Parallelization with OpenMP

A simple parallelization of for loops in OpenMP can be obtained as
follows:

#include <omp.h>

...

int main() {

...

double * __restrict a;

double * __restrict b;

double * __restrict c;

...

#pragma omp parallel for

for(int i=0;i<n;++i) {

c[i] = a[i] * a[i] + b[i] * b[i] * b[i];

}
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Usage of restrict with OpenMP

Parallelization with and without restrict
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private Construction in OpenMP

For more complicated constructions the simple pragma
# pragma omp parallel for
is not sufficient to obtain an efficient parallelization. One
reason for poor performance of an OpenMP parallelization
might be that the threads often need the same data from
main memory.
One way to avoid this is tell the compiler, that a variable is
only used private by every thread. This can be done by the
private construction as follows:
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private Construction in OpenMP

...
double * __restrict a;
double * __restrict c;
double sum;
int i,j;
...

\\ good version
#pragma omp parallel for private(j,sum)

for(i=0;i<n;++i) {
sum = 0.0;
for(j=0;j<n;++j) {

sum = sum + a[i * n+j];
}
c[i] = sum;

}
}
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private Construction in OpenMP

Computational time for OpenMP parallelization with
2 threads:
n 12 120 1200 12000
sec 3.9e-7 4.6e-5 4.7e-3 4.9e-1
sec parallel (good version) 1.5e-6 2.4e-5 2.3e-3 2.4e-1
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Bad Parallelization with OpenMP

...
double * __restrict a;
double * __restrict b;
double * __restrict c;
double sum;
int i,j;
...

// bad version
#pragma omp parallel for private(j,sum)

for(i=0;i<n;++i) {
sum = 0.0;
for(j=0;j<n;++j) {

sum = sum + a[j * n+i];
}
c[i] = sum;

}
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Bad Parallelization with OpenMP

This parallelization increases the computational time:
n 12 120 1200 12000
sec 3.9e-7 4.6e-5 4.7e-3 4.9e-1
sec parallel (bad version) 1.5e-6 1.1e-4 1.9e-2 3.0
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Euclidian Norm

Let us assume we want to calculate the euclidian norm of a
vector

‖v‖2 =

√

√

√

√

n
∑

i=1

v2i

Then, the following code leads to the wrong result:
...
double norm;
norm = 0.0;

#pragma omp parallel for
for(i=0;i<n;++i) {

norm = norm + a[i] * a[i];
}
norm = sqrt(norm);

}
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reduction Construction in OpenMP

A correct code can be obtained by the reduction
construction in OpenMP as follows:

...
double norm;
norm = 0.0;

#pragma omp parallel for reduction(+ : norm)
for(i=0;i<n;++i) {

norm = norm + a[i] * a[i];
}
norm = sqrt(norm);

}
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reduction Construction in OpenMP

reduction can be applied to the operators
+, * ,-,&,|,&&,ˆ ,|| .
Here, || reduces a maximum calculation of a variable.
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Not Parallelizable Loops

Consider the loop
...
for(i=1;i<n;++i)

a[i] = a[i-1]+b[i];
...

}
OpenMP will not parallelize this loop in a correct way.
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Not Parallelizable Relaxation Loop

OpenMP cannot parallelize the following loop in a correct
way:

...
for(i=1;i<n-1;++i)

a[i] = 0.5 * (a[i-1]+a[i+1]);
...

}
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Parallelizable Relaxation Loop

The following loop can be parallelized in a correct way by
OpenMP:

...
#pragma omp parallel for

for(i=1;i<n-1;i=i+2)
a[i] = 0.5 * (a[i-1]+a[i+1]);

#pragma omp parallel for
for(i=2;i<n-1;i=i+2)

a[i] = 0.5 * (a[i-1]+a[i+1]);
...
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Inlining Construction in C++

The call of a function requires computational times. To
avoid this problem a function can be defined to be inlined.
Example:

inlining double f(double x) { ... };
Advantage:

optimization of the code in the area where the function
is called (such as common subexpression elimination
and vectorization)

no overhead by calling the function

Disadvantage:

longer compilation time

longer executable code
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const Construction in C++

Parameters of functions which will not be changed should be defined to be
const .

Example:

inlining double f(const double x) { ... };

Member functions of a class which do not modify member values of the
class should be defined to be const member functions:

Example:

class A {

...

inlining double f(const double x) const { ... };

};

const can help a compiler to optimize a code.
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Meta-Programming in C++

The compiler optimizes
x = 3 * 4.0 + y;

by
x = 12.0 + y;

Can we obtain such an optimization for
x = Factorial(4) + y;

where Factorial(4) mathematically means

4! = 1 ∗ 2 ∗ 3 ∗ 4 = 24
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Factorial by Meta-Programming

Consider the C++ construction

template<int N>

class Factorial {

public:

enum { value = N * Factorial<N-1>::value };

};

class Factorial<1> {

public:

enum { value = 1 };

};

Then, the compiler replaces

x = Factorial<4>::value + y;

by

x = 24 + y;
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Meta-Programming

Meta-Programming means to write a program, which is
evaluated during compile-time and not during runtime.
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Insulation Property of a Wall

outside: cold

inside: warm

λinsulation = 0.04 W
mK

λKS = 0.56 W
mK

Figure 1: Construction of a wall
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Simple Mathematical Model

−div λ gradT = 0 on Ω

T |Γout
= −10 on Γout

T |Γin
= 20 on Γin

∂T
∂~n |ΓN

= 0 on ΓN

λinsulation

λKS

Γin

Γout

ΓN

Figure 2: Model of a wall
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Model Problem

−△T + cT = f on Ω

T |Γ = g on Γ

Ω = (0, L)2,

where c > 0 is a constant and L > 0 is the size of the
domain. Observe that

−div gradT = −△T = −∂2T

∂x2
− ∂2T

∂y2
.
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Discretization Grid of Finite Differences

The first step in a finite difference discretization is the
construction of a discretization grid :

hy

hx

Γh

Ωh

Figure 3: Finite difference discretization grid
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Finite Difference Discretization

Let Ω = (0, 1)2. Number the points of the discretization grid Ωh by:

h(1, 1), ..., h(1,m− 1), h(2, 1), ...

Then, the FD discretization leads to an equation Lh Uh = Fh, where

Lh =
1

h2

















Dh −E

−E Dh

. . .
. . .

. . . −E

−E Dh

















, and where

Dh =

















4 −1

−1 4
. . .

. . .
. . . −1

−1 4

















.
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Finite Element (FE) Norms

The finite element method leads to approximations
uh ∈ C(Ω) of an exact solution u ∈ C(Ω) of a PDE.
Suitable norms for calculating the discretization error are

‖u− uh‖L∞
:= max

x∈Ω
|(u− uh)(x)|

‖u− uh‖L2
:=

√

∫

Ω

|(u− uh)(x)|2 dx

These norms have the normalization property

(u− uh)(x) = 1 ∀x, h ⇒ ‖u− uh‖ = const ∀h

In case of solutions with singularities onecan expect a
better convergence for the ‖.‖L2

norm.
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Suitable Norms for FD

Let Ωh be a sequence of discretization grids.
We are looking for a sequence of norms on R|Ωh| with
similar properties for the FD method.

Example: A not suitable norm is

‖w‖ :=

√

∑

z∈Ωhi

|w(z)|2.
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Suitable Norms for FD

Definition 2. We call the sequence of norms ‖ · ‖hi
on R|Ωi|

normalized, if

‖1‖hi
= 1,

where 1 is the constant function x 7→ 1.

Example 3.

‖x‖2 :=

√

1

|Ωi|
∑

z∈Ωi

x2z

‖x‖∞ := max
z∈Ωi

|xz|
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Convergence of the FD Method

Theorem 1. Consider the finite difference discretization of Poisson’s
equation on Ω = (0, L)2 with meshsize h. Then, there is a constant
C > 0 such that

‖u− uh‖∞ ≤ Ch2
(∥

∥

∥

∥

∂4u

∂x4

∥

∥

∥

∥

∞
+

∥

∥

∥

∥

∂4u

∂y4

∥

∥

∥

∥

∞

)

.

Example:

If u = x2 ∗ y3, then u = uh,

If u = x4, then ‖u− uh‖∞ ≤ Ch2.
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Numerical Result

Example: Poisson’s equation on (0, 1)2.
Let f(x, y) = −12.0 ∗ x2 − exp(y). Then, the exact solution of

−△u = f = −12.0 ∗ x2 − exp(y) on Ω

u|∂Ω = x4 + exp(y) on ∂Ω

is
u(x, y) = x4 + exp(y).

The following table depicts the error eh,max := ‖u− uh‖∞:

h = 0.5 0.25 0.125 0.0625 0.03125
N = 1 9 49 225 961

eh,max ≈ 0.033 0.0094 0.0024 0.00061 0.00015
eh/2,max /eh,max ≈ 0.28 0.26 0.25 0.25
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How to Choose the Meshsizeh

Assume that the discretization error converges according

‖u− uh‖ ≤ Chp.

How should we choose h to obtain a discretization error
‖u− uh‖ ≤ η?
Assume that we can calculate ‖uh/2 − uh‖.
Then, the assumption ‖u− uh‖ ≈ Chp leads to

‖u− uh‖ ≈ 1

1− 2−p
‖uh/2 − uh‖.(1)

Thus, we have to choose h such that

‖uh/2 − uh‖ ≤ η(1− 2−p).
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Eigenvectors and Eigenvalues ofLh

Consider the FD discretization of Poisson’s equation on the
unit square.
Then, the matrix Lh has the eigenvalues

λν,µ =
4

h2

(

sin2
(

πνh

2

)

+ sin2
(

πµh

2

))

with eigenvectors

eν,µ =
(

sin(νπxi) sin(µπyj)
)

(xi,yj)∈Ωh

where ν, µ = 1, · · · ,m−1

and h = 1
m .

Smallest eigenvalue: 4
h22 sin

2
(

πh
2

)

≈ 2π2 .

Largest eigenvalue: 4
h22 sin

2
(

π(m−1)
2m

)

≈ 8
h2 .
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Eigenvectors and Eigenvalues ofLh

eigenvector e1,1 eigenvector e2,1

eigenvector

e3,3 =
(

sin(3πxi) sin(3πyj)
)

(xi,yj)∈Ωh
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Direct and Iterative Solvers

The FD discretization leads to an equation system

Ahuh = bh,

where Ah is an n× n matrix and uh, bh ∈ Rn are vectors.
There are

direct methods and

iterative methods

for solving such an equation system.
↓

Both methods lead to an approximation ũh of uh.

‖uh − ũh‖ is called algebraic error.
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Discretization Error and Algebraic Error

‖u− uh‖ is called discretization error.

‖uh − ũh‖ is called algebraic error.

‖u− ũh‖ is called total error.

The algebraic error should satisfy the property

‖uh − ũh‖ ≤ ‖u− uh‖α, where α ≈ 0.1.

Let the discretization satisfy ‖u− uh‖ ≤ Ch2.
Then, this implies

‖u− ũh‖ ≤ C(1 + α)h2.
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Discretization Error and Algebraic Error

It is very difficult to calculate numerically the

algebraic error ‖uh − ũh‖ and the

discretization error ‖u− uh‖.

Therefore, one often calculates

the residuum norm ‖Ahũh − bh‖ or

the norm ‖ũh − ũh/2‖.

If the exact solution is known, then one can numerically
calculate the total error

total error ‖u− ũh‖.
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Direct Solvers for Linear Equation Systems

The Gauss-elimination applied to a full matrix requires

O(n3) operations

O(n2) data

for solving a linear equation system with n unknowns.

The Gauss-elimination applied to a band matrix of bandwidth 2k − 1

requires

O(n ∗ k ∗ k) operations

O(n ∗ k) data.

A band matrix of
bandwidth k

has the form:























a11 . . . a1k
... a22

. . .
. . .

ak1
. . .

. . .
. . . an−k+1,n

. . .
. . . an−1,n−1

...

an,n−k+1 . . . ann






















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Direct Solvers for FD Discretization

Now consider the matrix of the FD discretization of Poisson’s equation on
Ω = (0, 1)2. The discretization matrix is a band matrix of size n = (m− 1)2

and bandwidth 2m− 1, since h = 1
m

Lh =
1

h2

















Dh −E

−E Dh

. . .
. . .

. . . −E

−E Dh

















, where Dh =

















4 −1

−1 4
. . .

. . .
. . . −1

−1 4

















Then, the Gauss-elimination applied to the band matrix Lh requires

O(n2) operations

O(n1.5) data.
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Iterative Solvers

Consider the linear equation system Ax = b.
An iterative solver for solving a linear equation system is a
mapping

S : Rn → R
n

with start vector x0 ∈ R such that the sequence (xi)i∈N
defined by

xi+1 = S(xi)
converges to x:

lim
i→∞

xi = x.

Obviously, x should satisfy the fix point property x = S(x).

– p. 86/249



Relaxation

Relaxation of the i-th unknown xi:
Correct xoldi by xnewi such that the i-th equation of the
equation system

A · x = b

is correct.
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Numbering of GS Relaxation

For Gauss-Seidel iteration one often applies lexicographical
and red-black numbering of the grid points.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 14 2 15 3

16 4 17 5 18

6 19 7 20 8

21 9 22 10 23

11 24 12 25 13
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Gradient Method

Let A be a symmetric positive definite n× n matrix
and b ∈ Rn.
The gradient method for solving

Ax = b

is
Start with x0 and calculate the sequence xk by:

dk = b−Axk

αk =
dTk dk

dTkAdk

xk+1 = xk + αkdk,

where k = 0, 1, 2, ....
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cg Iteration

Let the start solution be x0. Then: g0 = Ax0 − b

δ1 = gT0 g0 if δ1 ≤ ǫ stop

d1 = −g0

recursion: k = 1, . . . : hk = Adk

α =
δk

dTk hk

xk := xk−1 + αdk

gk := gk−1 + αhk

δk+1 = gTk gk if δk+1 ≤ ǫ stop

βk = δk+1/δk

dk+1 = −gk + βkdk
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Estimation of the Algebraic Error

Assume we want to solve

Ax = b

and we get the approximation x̃. A practical problem is:

How large is the algebraic error ‖x̃− x‖?

Assume, we apply an iterative solver.
How many iterations do we have to perform to obtain a
small algebraic error?

How to choose ǫ in the cg-iteration?

Assume, you have implemented two iterative solvers.
Which one is faster?

But: We do not know x !
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Estimation of the Algebraic Error for Tests

For testing a code one does the following test:
Construct right hand sides b such that the exact solution x is
well-known.
Example:

Choose b = 0.

FD on a unit square: Choose u = x2y3.

Start with x0 = 1.
Then, one can compute the algebraic error ‖x̃− x‖ and one
can compare two different codes.
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A Hard Approach

If the exact solution is unknown, one applies the following
difficult approach:
Calculate a very good approximation xe of x by a time
consuming solver. Then, consider

‖x̃− xe‖

as the algebraic error ‖x̃− x‖.
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Estimation of Algebraic Error by Residuum

The residuum is defined as

r := Ax̃− b

Then, ‖x̃− x‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖.
Example:

FD, Poisson on ]0, 1[2: ‖A−1‖2 = λ−1
1 ≈ 1

2π2 .

Assume that x̃− x = em−1,m−1 + h2e1,1. Then,

‖x̃− x‖2 ≈ 1 and ‖A−1‖2‖r‖2 ≈ h−2.

Assume that x̃− x = h2em−1,m−1 + e1,1. Then,

‖x̃− x‖2 ≈ 1 and ‖A−1‖2‖r‖2 ≈ 1.

Thus, if ‖r‖ is small, then ‖x̃− x‖2 can be large or small!
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Estimation of Algebraic Error by Residuum

The residuum is defined as

r := Ax̃− b

Then, if ‖r‖ is small, then ‖x̃− x‖2 can be large or small!
Therefore, do not use the size of the residuum to compare
two different iterative algorithms.
Example:
FD, Poisson on ]0, 1[2: We want to obtain ‖x̃− x‖2 = O(h2).

MG: Iterate such that ‖r‖ = O(1) .

SSOR: Iterate such that ‖r‖ = O(h2) .
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Property of Iterative Solvers

Let x0 ∈ Rn and

S : Rn → R
n

be an iterative solver such that the sequence (xi)i∈N defined
by

xi+1 = S(xi)
converges to x. Most of the iterative solvers have the
following property:
There exists a constant 0 < q < 1 and s, imin ∈ N such that

‖xi+s+1 − xi+s‖ ≤ qs‖xi+1 − xi‖

for every i > imin. q is called convergence rate of S.
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Algebraic Error of an Iterative Solver

Theorem 2. Let 0 < q < 1, s, imin ∈ N, x0 ∈ Rn and

S : Rn → R
n

be an iterative solver such that the sequence (xi)i∈N defined by

xi+1 = S(xi)

converges to x and satisfies

‖xi+2 − xi+1‖ ≤ q‖xi+1 − xi‖

for every i > imin. Then, the algebraic error can be estimated by

‖x− xi‖ ≤ ‖xi+1 − xi‖(1− q)−1.
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Estimation of the Convergence

We want to find a small parameter such that

‖xi+2 − xi+1‖ ≤ q‖xi+1 − xi‖.

Several iterative solvers have the following property:
There exists a constant 0 < q < 1 and s, imin ∈ N such that

‖xi+s+1 − xi+s‖ ≤ qs‖xi+1 − xi‖.

for every i > imin.

Calculate q̃ = ‖xi+2−xi+1‖
‖xi+1−xi‖ for large i.

Calculate q̃ =
(

‖xi+s+1−xi+s‖
‖xi+1−xi‖

)
1

s

for large i, s ≈ 5− 20.

Take q̃ as an approximation of q.
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Convergence Rate of Linear Iterative Solvers

Let
S(xi) = Cxi + d

be an iterative solver (C matrix and d vector).
Then, the convergence rate q does not depend on the right
hand side b and not on the start value x0
(with the exception of choosing an eigenvector as x− x0).
Example 4. The Gauss-Seidel iteration is a linear iterative solver. To
estimate the convergence rate, choose the right hand side 0 and the
start vector x0 = 1. Then,

q̃ =
‖xi+1‖
‖xi‖

is an approximate value of the convergence rate q for large values i.
Remark: To avoid overflow and underflow, additionally normalize the
vectors xi.
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Estimation of the Convergence

We want to find a small parameter q such that

‖xi+2 − xi+1‖ ≤ q‖xi+1 − xi‖.

Another way to estimate the convergence rate is to study
the behavior of the residuum as follows:
Let

ri = Axi − b

Calculate q̃ = ‖ri+1‖
‖ri‖ for large i.

Calculate q̃ =
(

‖ri+s‖
‖ri‖

)
1

s

for large i, s ≈ 1− 20.

Take q̃ as an approximation of q.
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Meshsize and Iteration Number

Assume we want to obtain a total error ‖u− uh,i‖ ≤ η!

1. For every meshsize h calculate q̃ by

q̃ =

(

‖uih+s+1 − uih+s‖
‖uih+1 − uih‖

)
1

s

for large ih and suitable s ≈ 1− 20.

2. Calculate ih such that
‖uh,ih+1 − uh,ih‖(1− q̃)−1 ≤ 1

4η(1− 2−p).

3. Choose h such that ‖uh,ih − uh/2,ih/2‖ ≤ 1
4η(1− 2−p).

Then, we obtain ‖uh − uh/2‖ ≤ 3
4η(1− 2−p) and thus

‖u− uh,ih‖ ≤ η.
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Is there a Bug in the Code or not?

If a simulation program does not simulate a physical
process in a correct way, there can be different reasons for
this:

inaccuracy of the model.

error in the mathematical solver.

error (bug) in the code.

There exist different bugs:

syntax error,

wrong usage of memory,

logical sequence of the code is not correct, or

the mathematical formula is not implemented in a
correct way.
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Debugging with gdb

Compile with option -g and execute gdb code .

b ln Set breakpoint at line number ln.

r Run code.

s Make one step.

S Make one step and do not go into functions.

p u Print u.

b Backtrace how the code went to a certain point in
the code.

up Go up the stack frame.

down Go down the stack frame.

c Continue running the code.
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Apply intelligent print statements!

Instead of using the command p in gdb write your own
intelligent print statements, which gdb does not contain.
Example:

Print_L_infty(u);
Prints the L∞ norm of a vector u.
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Finding a Bug in a Radio
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Finding a Bug in a Radio
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Finding a Bug in a Radio
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Finding a Bug in a Radio
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Hierarchical Search of Bug

Location of the bug
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Reduction of the Problem

A very important concept is the concept to
reduce a big problem to a smaller one.
Of course the hierarchical search can be treated as such a concept. But
there are also other ways to reduce a problem.

Skip parts of the code in an hierarchical way such that the resulting
code still contains the bug.

Comment out statements in the code. As an example omit coarse
grid correction in a multigrid code.

Write a smaller code which contains the bug.

Find a problem with a smaller problem size, such that the bug
appears!

Find a problem with known exact solution or a more simple solution!

If a reduction of the code is not possible any more, then analyze the code.
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Memory check by valgrind

Call valgrind by
valgrind --tool=memcheck --leak-check=yes run

Use of valgrind for:

finding causes for segmentation faults.

finding memory leaks
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Warnings in an HPC code

Warnings in a code are very useful to avoid bugs in a code.

class vector {

public:

vector(int dim_);

double operator[] (int i) {

if(i< 0) cout << ‘‘i negative ‘‘ << endl;

if(i>=dim) cout << ‘‘i too large‘‘ << endl;

return a[i];

}

private:

int dim;

double * a;

}

But this implementation of operator[](int i) is very inefficient.
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Warnings in an HPC code

To increase performance implement a developer version as in the
following example:

#define developer_version true

// #define developer_version false

...

double vector::operator[] (int i) {

if(developer_version) {

if(i< 0) cout << ‘‘i negative ‘‘ << endl;

if(i>=dim) cout << ‘‘i too large‘‘ << endl;

}

return a[i];

}

or one can use assert as follows:
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Avoid == Sign

Try to avoid the == sign. Instead use ≥ or ≤.
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Avoid double Comparison

Example:
Instead of

double x,h;
h = 1.0 / 10.0;
for(x=0.0;x<=1.0;x=x+h) {

...
}

write
double x,h;
h = 1.0 / 10.0;
for(int i=0;i<10;++i) {

x = i * h;
...

}
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Mathematical Error or Bug in the Code?

Often it is difficult to decide, if there is

an inaccuracy in the model,

an error in the mathematical solver, or

a bug in the code.

This is one of the reasons why a simulation code must be
developed in several modules. Each of the modules must
be tested in detail.
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Test Frame for Module Test

Implement a test frame for modules. This frame gives a module certain
input data and requires certain output data. If the output data are correct,
then the module is expected to be correct.

module 1

module 2

test frame
main module
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Integration and Regression Test

Using the test frame, apply the same tests for each
module while developing the code and adding new
modules.
This is called integration test.

Store results of your tests in a data file. Compare new
test results with older test results.
This is called regression test.
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Finding Test Functions

The general concept is to calculate the right hand side for a
given exact solution. These exact solution are the test
functions.
There are different kinds of test functions:

function 0, 1, x, y, ....

functions with special properties:
u = sin(x ∗ π) sinh(y ∗ π), u = et sin(x ∗ π)
u = x2 ∗ y3

symmetric solutions like u = x5 ∗ y5.
general functions. Calculate right hand side by a
computer manipulation program (maple,mathematica).

First, test your code with the simplest one!
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Test Parameters

Consider the PDE:

∂u

∂t
= −△u+ aw − f

∂w

∂t
= −△w + bu− g

Parameters in a FD discretization are:

physical parameters a, b.

meshsize h, timestep τ .

number of grid points N , number of timesteps m.

First, test your code for physically not correct parameters:

a, b = 0, +
−1, +

−10, ...

N = 1 and m = 1, ...
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Test Part of the PDE

Instead of

∂u

∂t
= −△u+ aw − f

∂w

∂t
= −△w + bu− g

first test the stationary scalar equation:

−△u+ aw = f

and the stationary system:

−△u+ aw = f

−△w + bu = g.
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Test Convergence

Test the convergence of your discretization for different
test functions and parameters in the equation.

Test the convergence rate of your iterative solver for
different parameters.
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Test of an Unstructured Grid Code

Assume there is a bug in your unstructured grid code with a
complicated unstructured grid like:

−→ To Calculate the matrix elements in each step of the
code by hand is too complicated!
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Test of an Unstructured Grid Code

To test your code let your unstructured grid generator
generate a simple structured grid like

or

and test your code.
−→ Change x and y coordinates and test symmetry of your
code!
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General Software Development

implementation

module test

integration test

system test

What does the user want to have?

How to realize the requirements by software?

Write the realization!

Test the realization!

Test the design spec!

Test the requirement spec!

requirement spec.

design specification
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Implement and Test

Build up your code step by step!
Example: Write a code for

−△u+ aw = f

and then for

−△u+ aw = f

−△w + bu = g

and at last for:

∂u

∂t
= −△u+ aw − f

∂w

∂t
= −△w + bu− g.

Implement one module and test it!
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Types of Modules

vector library (contains matrix multiplication, use
libraries like LAPACK)

grid generator

linear equation solver

calculation of stiffness matrix

parallelization module

input, output

applications (different fluid dynamics applications)
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Problems in PDE Software Development

Black box solvers which are independent of the PDE
and the discretization would be very helpful for the
software development (algebraic multigrid (AMG), direct
solver). But the optimal solver depends on the PDE and
its discretization.

Optimal solvers use the data structure of the
discretization.

Complicated data structure is needed for adaptive
parallel solvers with load balancing.

It is difficult to describe suitable interfaces between
solvers.

A clear software design often is in contradiction to
efficiency. Therefore, expression templates and other
template constructions are needed!
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Operator Overloading for Vector Class

Consider the vector class
class vector {

public:
vector(int l);
double operator[](int i) { return p[i]; }
...

private:
int length;
double * p;

};
How should we implement an operator

vector operator+(vector &a, vector &b)
in an efficient way?
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Operator Overloading for Small Vectors

Example: vector class complex:
class complex {

public:
complex(double& re, double& im);
...
double Re, Im;

};

complex operator+(complex &a, complex& b) {
return complex(a.Re + b.Re,a.Im + b.Im);

}
In case of longer vectors introduce the length of the vector
as a template parameter.
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Vector Class for Long Vectors

class vector {
public:

vector(int l) { p = new double[l];
length = l; };

double operator[](int i) { return p[i]; }
...

private:
int length;
double * p;

};
Problem:

Should vector operator+(vector &a, vector
&b) allocate an auxiliary vector?

Efficient implementation of c = a+b+d; requires only
one loop!
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Realization of an Efficient Operator+

Implement operator+ such that it gives back an object,
which is able to add two vectors:

class add_vector {
public:

add_vector(double& * a, double& * b)
: pa(a), pb(b) {};

double operator[](int i) const
{ return pa[i] + pb[i]; }

...
private:

double * pa, * pb;
};
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Expression Template - Wrapper Class

To construct expression templates, we first need a wrapper
class, which represents all possible expressions:
template<class A>
class DExpr {

private:
A a_;

public:
DExpr(const A& x)

: a_(x) {}
double operator[](int i) const

{ return a_.[i]; }
};
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Expression Template - Operator +

template<class A, class B>
class DExprSum {

const A a_; const B b_;
public:

DExprSum(const A& a, const B& b)
: a_(a), b_(b) {}

double operator[](int i) const {
return a_.[i] + b_.[i]; };

};

template<class A, class B>
DExpr<DExprSum<DExpr<A>, DExpr<B> > >
operator+(const DExpr<A>& a,const DExpr<B>& b) {

typedef DExprSum<DExpr<A>, DExpr<B> > ExprT;
return DExpr<ExprT>(ExprT(a,b));

}
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Properties of Expression

efficient implementation by inlining.

parallelization by OpenMP is possible.

user friendly interface.
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Expression Tree

The expression
d = a + b + c;
leads to the following expression tree:

DExpr<DExprSum<Dvector,Dvector>>

DExpr<DExprSum<DExpr<DExprSum<Dvector,Dvector>>,Dvector>>

Dvector Dvector

Dvector
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First Simplification

template<class A, class B, class Op>

class DExprBinOp {

const A a_; const B b_;

public:

DExprBinOp(const A& a, const B& b) : a_(a), b_(b) {}

double operator[](int i) const {

return Op::apply(a_.[i], b_.[i]);};

};

class DApSum {

public:

DApSum() { }

static inline double apply(double a, double b)

{ return a+b; }

};
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Second Simplification

template <class A> struct Expr{

inline const A& operator˜() const{

return static_cast<const A&>( * this);}

};

class vector : public Expr<vector> {

public:

...

template <class A>

void operator=(const Expr<A>& a) {

for(int i=0;i<length;++i) {

p[i] = (˜a).[i];

}}

...

};
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Second Simplification

template <class A, class B>

class DExprSum : public Expr<DExprSum<A,B> >{

const A& a_; const B& b_;

public:

DExprSum(const A& a, const B& b)

: a_(a), b_(b){}

double operator[](int i) const {

return a_.[i] + b_.[i]; };

}

template <class A, class B>

inline DExprSum<A,B> operator+ (const Expr<A>& a, const Ex pr<B>&

return DExprSum<A,B>(˜a,˜b);

}
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cg with Expression Templates

r = A * u - f;
d = -r;
delta = product(r,r);
for(i=1;i<=iteration && delta > eps;++i) {

g = A* d;
tau = delta / product(d,g);
r = r + tau * g;
u = u + tau * d;
delta_prime = product(r,r);
beta = delta_prime / delta;
delta = delta_prime;
d = beta * d - r;

}
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Automatic Parallelization

code

application

serial
library

parallel
library

Automatic parallelization means that only a change of the
included library leads to a parallel code.
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Automatic Parallelization

Automatic parallelization means that only a change of the
included library leads to a parallel code.
Example:
template <class A>
void vector::operator=(const Expr<A>& a) {

#pragma omp parallel for
for(int i=0;i<length;++i) {

p[i] = (˜a).[i];
}

}
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Remark on Efficiency

In some cases a straight forward implementation of
expression templates leads to less an efficient codes than a
direct implementation. The reason is that the compiler
cannot see a difference between expressions like

a = b+b+b+b;
and

a = b+c+d+e;
To avoid this problem one can construct enumerated
variables.

variable<1> a;
variable<2> b;
....

Here the class variable<n> has an additional template
parameter n.
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Expression Templates for Vectors

Construct operators for operations between

vectors

matrix and vector and

matrices.

Blitz++ is such a library.
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Expression Templates on Structured Grids

Let us assume that we want to perform finite difference
operations on a 2D-structured grid Ωh.
Implement expression templates such that

u[I][J] = 0.25 * (u[I+1][J]+u[I-1][J]+
u[I][J+1]+u[I][J-1]);

performs a red black Gauss-Seidel iteration for Poisson’s
equation on Ωh. Here,

u a vector on the grid Ωh

u[I][J ] represents u(ih, jh)

u[I + 1][J ] represents u((i+ 1)h, jh)

...

Automatic parallelization of the above expression template
implementation is possible.
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Expression Templates on Structured Grids

A Jacobi-iteration for Poisson’s equation has to be
implemented as follows:

r[I][J] = 0.25 * (u[I+1][J]+u[I-1][J]+
u[I][J+1]+u[I][J-1]);

u[I][J] = r[I][J];
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Expression Templates on Structured Grids

One also can implement an operator Laplace FD(u)
representing the mathematical operator

1

h2

(

4 ∗ u(ih, jh) −u((i+ 1)h, jh)− u(ih, (j + 1)h)

−u((i− 1)h, jh)− u(ih, (j − 1)h)
)

.

Let Laplace FD diag() be the corresponding diagonal
coefficient vector of Laplace FD(u) . Then, a
Gauss-Seidel iteration for −△u = f can be implemented as
follows

u = u - (Laplace_FD(u)+f)/ Laplace_FD_diag();
and Jacobi by

r = u - (Laplace_FD(u)+f)/ Laplace_FD_diag();
u = r;

– p. 147/249



A Suitable Interface for PDE’s

Consider the following implementation of Gauss-Seidel:
u[I][J] = 0.25 * (u[I+1][J]+u[I-1][J]+

u[I][J+1]+u[I][J-1]);
Problems:

What is the range of I and J?

How, to set values at the boundary?

How, to implement boundary conditions?
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A Suitable Interface for PDE’s

A suitable language for implementing PDE solvers is a
current research topic. An optimal interface language is
unknown up to now!
Suggestions:

geometric objects - algebraic objects

restriction operator to connect geometric objects and
algebraic objects.

vectors on grids and pure algebraic vectors.

– p. 149/249



Geometric Objects - Algebraic Objects!

Geometric objects:
vector3D Ma(0.0,2.0,1.0);
vector3D Mb(0.0,0.0,1.0);
Ball ball_a(1.0, Ma);

// domain with radius 1.0 at point Ma
Ball ball_b(1.2, Mb);

// domain with radius 1.2 at point Mb
...

Domain domain = ball_a || ball_b;

Algebraic objects:
vector v1(1000), v2(1000), v3(1000);
...
v3 = v1 + v2;
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Discretization Grid - Subgrids!

// Geometric objects:
Domain domain a = ...; // Ωa

Domain domain b = ...; // Ωb

Grid grid(domain a,h); // Ω̄a
h

// grid on domain a with meshsize h

Subgrid subgrid(grid,domain b); // Ω̄a
h ∩ Ωb

Boundary subgrid boundary(grid); // Γa
h = Ω̄a

h ∩ ∂Ωa

Interior subgrid interior(grid); // Ωa
h

Boundary subgrid Dirichlet(boundary,domain b);

// Γa
h ∩ Ωb
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Algebraic Vectors on a Grid

// Geometric objects:
Domain domain a = ...; // Ωa

Grid grid(domain a,h); // Ω̄a
h

// grid on domain a with meshsize h

Boundary subgrid boundary(grid); // Γa
h = Ω̄a

h ∩ ∂Ωa

Interior subgrid interior(grid); // Ωa
h = Ω̄a

h\∂Ωa

// Variable: vector on a grid (algebraic vector with geometric information)

Variable u(&grid), f(&grid); // u, f ∈ R
|Ω̄a

h|

coordinate x X; coordinate y Y; // coordinates

// Application of the restriction operator

u = X* X* Y* Y | boundary;
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Poisson with Dirichlet Boundary Conditions

// Geometric objects:
Domain domain a = ...; // Ωa

Grid grid(domain a,h); // Ω̄a
h

// grid on domain a with meshsize h

Boundary subgrid boundary(grid); // Γa
h = Ω̄a

h ∩ ∂Ωa

Interior subgrid interior(grid); // Ωa
h = Ω̄a

h\∂Ωa

// Variable: vector on a grid (algebraic vector with geometric information)

Variable u(&grid), f(&grid); // u, f ∈ R
|Ω̄a

h|

coordinate x X; coordinate y Y; // coordinates

// Application of the restriction operator

u = X* X* Y* Y | boundary;

f = -2 * (X * X+Y* Y) | interior;

for(int i=1;i<50;++i)

u = u-(Laplace_FD(u)+f) / Laplace_FD_diag() | interior;
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Parallelization Concepts

One can distinguish the following parallelization concepts:

Shared memory parallelization
Parallelization with one main memory and several
different processors
NUMA architecture (Non-Uniform Memory Access).

Distributed memory parallelization

Hybrid parallelization with a shared memory and a
distributed memory

Vectorization. One processor can perform parallel
computations on long vectors.
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MPI - Message Passing Interface

MPI is a library language for C, C++ and FORTRAN.

There exist different MPI libraries. MPICH and
MPI-LAM are one of them.

The MPI library is included by mpi.h .

Run an MPI code by
mpirun -np p code

Here p is the number of processors.
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MPI - Message Passing Interface

Every processor runs the same program with a different
rank.

Data are send by MPI-functions from one processor to
the other.
All MPI-functions have the prefix MPI .

Data are send from one processor to the other of a
certain communicator. The rank of the processor
depends on the communicator.
Here, we use only the communicator MPI COMMWORLD
which is of type MPI Comm.
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First MPI - Functions

Let us describe the most elementary MPI functions:
int MPI_Init(int * argc, char *** argv);
int MPI_Comm_size(MPI_Comm comm, int * size);
int MPI_Comm_rank(MPI_Comm comm, int * rank);
int MPI_Comm_Finalize();

size is the total number p of processors and
rank the number from 0, ..., p− 1.
The return value of these function is an information about
the error. This will be discussed later.
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MPI_Bcast and MPI_Reduce

MPI Bcast sends data from processor with number root to all other
processors.
MPI Reduce applies an operation to data of all processors. The result is
sent to root.

int MPI_Bcast(void * buf, int count, MPI_Datatype datatype,

int root, MPI_Comm comm);

int MPI_Reduce(void * sendbuf, void * recvbuf, int count,

MPI_Datatype datatype, MPI_Op op,

int root, MPI_Comm comm);

Pointers (like buf ) point to arrays of type datatype and length count .
Possible data types for MPI Datatype are:

MPI_INT, MPI_DOUBLE, MPI_LONG, MPI_CHAR, ...
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Example Numerical Integration

The trapezoidal rule is the following rule for numerical
integration:

∫ 1

0

f(x)dx ≈ h

n
∑

i=1

f
(

h(i− 0.5)
)

where h = 1
n . To parallelize this formula let us assume that

n = kp, where p is the number of processors. Then, we get

∫ 1

0

f(x)dx ≈
p
∑

j=1

h

k
∑

i=1

f
(

h(((j − 1)k + i)− 0.5)
)
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Send and Receive with Blocking

MPI send sends data to the processor with destination rank dest and
with tag (german: Anhänger, Etikett): tag .
Valid tags are values from 0 to 32767.
MPI Recv receives data from processor with source rank source . This
function returns the status status .

int MPI_Send(void * buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm);

int MPI_Recv(void * buf, int count, MPI_Datatype datatype,

int source, int tag,

MPI_Comm comm, MPI_Status * status);

status provides the following informations:

status.MPI SOURCE

status.MPI TAG

For other functions, status can provide informations about the error.
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Example for Send and Receive

if(my_rank!=0)

MPI_Send(&my_integral,1, MPI_DOUBLE,0,

10+my_rank, MPI_COMM_WORLD);

else {

double source_integral;

MPI_Status status;

integral = my_integral

for(int source=1;source<p;++source) {

MPI_Recv(&source_integral,1, MPI_DOUBLE,source,

10+source, MPI_COMM_WORLD, &status);

integral = integral + source_integral;

cout << " I got message from: " << source << endl;

}

}
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Improvement by MPI_ANY...

if(my_rank!=0)

MPI_Send(&my_integral,1, MPI_DOUBLE,0,

10+my_rank, MPI_COMM_WORLD);

else {

double source_integral;

MPI_Status status;

integral = my_integral

for(int source=1;source<p;++source) {

MPI_Recv(&source_integral,1, MPI_DOUBLE,MPI_ANY_SOUR CE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

integral = integral + source_integral;

cout << " I got message from: "

<< status.MPI_SOURCE << endl;

}

}
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Send and Receive without Blocking

int MPI_Isend(void * buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm,

MPI_Request * request);

int MPI_Irecv(void * buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,

MPI_Request * request);

int MPI_Test(MPI_Request * request, int * flag,

MPI_Status * status);

int MPI_Wait(MPI_Request * request, MPI_Status * status);

int MPI_Waitall(int count,MPI_Request * array_of_request,

MPI_Status * array_of_statuses);
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double * source_integral;

MPI_Request * req; MPI_Status * status;

req = new MPI_Request[p-1];

status = new MPI_Status[p-1];

source_integral = new double[p];

if(my_rank!=0) {

MPI_Isend(&my_integral,1, MPI_DOUBLE,0,

10+my_rank, MPI_COMM_WORLD,&req[0]);

MPI_Waitall(1,req,status); }

else {

source_integral[0] = my_integral;

for(int source=1;source<p;++source) {

MPI_Irecv(&source_integral[source],1, MPI_DOUBLE,sou rce,

10+source, MPI_COMM_WORLD, &req[source-1]);

}

MPI_Waitall(p-1,req,status);

integral=0.0;

for(int source=0;source<p;++source) {
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Error Handlers

There are two different error handlers:

MPI ERRORSAREFATAL (default): This error handler
forces to abort all MPI processes.

MPI ERRORSRETURN: Now, the MPI-function returns an
error information.

One can set the handler MPI ERRORSRETURNby
MPI_Errhandler_set(MPI_COMM_WORLD,

MPI_ERRORS_RETURN);

– p. 165/249



Error Handler MPI ERRORSRETURN

Let errcode be a return value of an MPI-function. Then,

errcode==MPI SUCCESS(This means there is no
error.), or

errcode can be decoded by

int MPI_Error_class(int errcode,
int * errorclass)

Possible values for * errorclass depend on the MPI
implementation. In MPI-1 the following classes are defined:

MPI_SUCCESS
MPI_ERR_RANK
MPI_ERR_BUFFER
...
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Test Incoming Message

Sometimes a process would like to know, whether there is a
process sending a message. This can be tested by
MPI Iprobe .
Example

if(my_rank==0) {
MPI_Status status; int flag = false;
MPI_Iprobe(MPI_ANY_SOURCE,2,MPI_my_rank,

&flag, &status );
if(flag==true) {

int rank_from = status.MPI_SOURCE;

MPI_Recv(buffer, num_data,
MPI_DOUBLE,rank_from,
2,MPI_my_rank, &status); }}
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Debugging

A parallel debugger is totalview.
The running state on every processor is reported on a
different window.

– p. 168/249



Parallelization of PDE-Solvers

Let us assume that a PDE is discretized on the
discretization grid Ωh.
A distributed memory parallelization of algorithms on Ωh is
based on a partition of Ωh:

Ωh =

p
⋃

i=1

Ωi
h.

An optimal partitioning depends on

the “sequential flow” of the algorithm,

the amount of data to be sent, and

the amount of computations, which have to be
performed on each partition. This computational
amount should be balanced on the partitions (load
balancing).
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Optimal Partitioning for Relaxation Methods

P2

P1

P3

P4

P1

P2 P3

P4

point approach cell approach

– p. 170/249



Cell Partitioning

P2

P1

P3

P4

Ωh = {(ih, jh) | i, j = 0, ..., N−1},

where h = 1
N−1 and

N =
√
pn, n,N ∈ N.

Ωk,s
h = {((kn+ i)h, (sn+ j)h) | i, j = 0, ..., n − 1},

where k, s = 0, ...,
√
p− 1. Then,

Ωh =

√
p−1
⋃

k,s=0

Ωk,s
h .
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Cell Partitioning

PM

PN PNE

PE

PSEPSPSW

PW

PNW For the evaluation of stencil
operators, data of points on
neighbor processors are
needed.
These are the data at ghost
points:

Ω̂k,s
h \Ωk,s

h

where

Ω̂k,s
h = {((kn+ i)h, (sn + j)h) | i, j = −1, ..., n} ∩ Ωh

for k, s = 0, ...,
√
p− 1.
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Update of Data for Jacobi Iteration

PM

PN PNE

PE

PSEPSPSW

PW

PNW

In a Jacobi iteration,
data have to be sent and re-
ceived from neighbor processors.
Let N,S,NW, ... be the indices of
the neighbor processor with index
M = (k, s).

Then, before every Jacobi iteration the data
at points Ω̂M

h ∩ ΩP
h have to be sent from processor P

to processor M .
Let us denote this procedure Send(P);
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Example Code

Implement first MPI Irecv then MPI Isend !

num_message = 0;

if(rank_source != -1 && number_receive>0) {

MPI_Irecv(receive_info ,number_receive,

MPI_DOUBLE,rank_source,26,comm,

&req[num_message]);

++num_message;

}

if(rank_destination != -1 && number_send>0) {

MPI_Isend(send_info,number_send,

MPI_DOUBLE,rank_destination,26,comm,

&req[num_message]);

++num_message;

}

MPI_Waitall(num_message,req,status);
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Two Sending Approaches

1. Approach

Send(E); Send(W); Send(N); Send(S);

Send(NE); Send(NW); Send(SE); Send(SW);

Waitall();

2. Approach

Send(E); Send(W);

Waitall();

Send_(N); Send_(S);

Waitall();

This approach updates data also from NE,NW,... , if Send also
sends the updated data from processor E,W.
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Sending for 4 Color Gauss-Seidel

NE point

SE point

NW point

SW point

NENNW

W

SW S SE

EM
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Point Partitioning

P1

P2 P3

P4

point approach

Ωh = {(ih, jh) | i, j = 0, ..., N},

where h = 1
N and H = 1√

p

N =
√
pn, n,N ∈ N. Define

Ω̄k,s = [Hk,H(k + 1)]× [Hs,H(s+ 1)]

Ω̂k,s = [Hk,H(k + 1)[×[Hs,H(s+ 1)[

Ωk,s
h = Ωh ∩

(

Ω̄k,s\
⋃

(k′,s′) 6=(k,s) Ω̂
k′,s′
)

. Then,

Ωh =
⋃

√
p−1

k,s=0 Ω
k,s
h .
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Load Balancing

P2

P1

P3

P4

Ωh = {(ih, jh) | i, j = 0, ..., N − 1},

where h = 1
N . Let p = p1p2.

Make a partitioning with
p1 processors in x-direction and
p2 processors in y-direction .

Same load balancing for every processor.

Dsend = 2N
p1

+ 2N
p2

= 2N( 1
p1

+ 1
p2
) data to be sent.
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MPI with Expression Templates

Let us consider the cg iteration:

r = A * u - f;

d = -r;

delta = product(r,r);

for(i=1;i<=iteration && delta > eps;++i) {

g = A* d;

tau = delta / product(d,g);

r = r + tau * g;

u = u + tau * d;

delta_prime = product(r,r);

beta = delta_prime / delta;

delta = delta_prime;

d = beta * d - r;

}

When is an update of ghost values needed?
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MPI with Expression Templates

enum Update_typ { no_update, update };

class vector : public Expr<vector> {

public:

vector(int l) { update_var = no_update; };

Update_typ expression_update_typ() const {

return update_var; };

private:

Update_typ update_var;

int id;

... };

Update_typ DExprSum::expression_update_typ() const {

return a_.expression_update_typ() ||

b_.expression_update_typ() };

Update_typ DExprLaplace_FD::expression_update_typ() c onst {

return update; };
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MPI with Expression Templates

class Update_handler;

template <class A>

void vector::operator=(const Expr<A>& a) {

if((˜a).expression_update_typ()) {

Update_handler handler_update;

(˜a).Give_update_data(handler_update);

handler_update.Make_update();

}

for(int i=0;i<lenghth;++i) {

p[i] = (˜a).[i];

}

}
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Raytracing

Raytracing is used in

Computer graphics: How does light look at an image
plane?

Simulation of light in engineering applications: How is
ight absorded in a medium (example: laser crystal).

The main idea of ray tracing is that light is modeled by
several rays of light.
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Forward and Backward Raytracing

Forward Raytracing: Light propagates from a light
source in several directions until either vanishes by
absorpion or it impings at the image plane or leaves out
of the computational domain.

Backward Raytracing: Find the rays which imping at the
image plane by back tracing rays beginning from all
points of the image plane in all possible directions.
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Concept of Forward Raytracing

A ray starts at a point P and propagates in direction ~d with
intensity I. The path of the ray can be described by

P + λ~d, λ ∈ R

The following situations can happen:

The ray propagates out of the computational domain.

The ray impings at an object and vanishes.

The ray impings at an objects and is reflected in one or
more directions.

The ray progagates from a medium A to medium B with
different refraction indices.

Light of the ray is absorbed while propagating through a
medium.
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Ray out of the Computational Domain

computational

P

domain

~d
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Ray Impings on Object

P
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Perfect Specular Reflection

P

αin

αout

In case of perfect specular reflection, there is only one
reflected ray which satisfies:

αin = αout.
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Perfect Diffuse Reflection

The Lambert refection describes a diffusive reflection of
light by several rays:

P
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Perfect Specular Transmission

P

αt

iαin

na

nb

Perfect specular transmission satisfies Snell’s law:

αin · nA = αt · nB.
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Perfect Diffusive Transmission

P
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General Situation

P

αt

ain

nA

nB
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Light Sources

There exist different kind of light sources:

point light source

multimode light source

Gaussian beam light of low oder (not multimode).
→ This kind of light cannot be modeled by ray tracing.
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Point Light Sources

P
P

one direction several directions
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Multimode Light Sources

Set of rays starting at points Pi, i = 1, ..., n to every direction
with angle φ between −α and α:

P1

Pi

Pn

α

The numerical aperture NA is defined by:
NA = nr · sin(α), where nr refraction index of the medium.
Example: Light of multimode fiber.
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Discretization of Light Source

Assume that a light source consists of an infinite number of
rays starting at points Pi ∈ Ωsource in directions ~di ∈ ΦPi

.
Assume that the intensity of the light source is constant
close to the light source.
To discretize the light source, we approximate the light
source by a finite number of rays:

N rays starting at Pi in direction ~di,
where i = 1, ..., N .

If the total power of the light source is I, then the power of
each discretized ray is I/N .
Often, the starting points Pi and the directions ~di can be
chosen by random numbers.
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Random Numbers

Assume that Pi ∈ Ωsource ⊂ [ax, bx]× [ay, by] and
~di ∈ ΦPi

= [aφ, bφ].

Then, random values for Pi and the directions ~di can be
constructed by a random number generator for an interval
[a, b].
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Absorption of Light

Assume that light propagates through absorbing medium.

P

A
B

cell

Discretize absorbing medium by cells of meshsize h. The
power of light absorbed in a cell is:

Pabs(cell) = P (A)(1− exp(−αAB)).
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ODE’s

Let us assume that the ODE

y′(t) = f(t, y(t)), t ≥ t0

y(t0) = y0

is given, where y : [t0,∞[→ Rn.
To discretize this ODE, let τ > 0 be a time step.
Let us denote yi the approximation of y(ti), where ti := τi+ t0.
Types of solvers:

simplest method: Euler method

Runge Kutta methods (one step method)

multi-step methods

implicit, explicit methods
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Examples

explicit Euler: yi+1 = yi + τf(ti, yi).

implicit Euler: yi+1 = yi + τf(ti+1, yi+1).

classical Runge Kutta method

k1 = τf(xi, yi)

k2 = τf(xi + 1/2τ, yi + 1/2k1)

k3 = τf(xi + 1/2τ, yi + 1/2k2)

k4 = τf(xi + τ, yi + k3)

yi+1 = yi + 1/6k1 + 1/3k2 + 1/3k3 + 1/6k4.

Simpson’s method:

yi+1 − yi−1 =
τ

3
(f(ti+1, yi+1) + 4f(ti, yi) + f(ti−1, yi−1)).

Middle point method: yi+1 − yi−1 = 2τf(ti, yi).
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Stability of a Multi-Step Method

To analyze the stability of a multi-step method of length s,
consider the ODE

y′ = 0, y(0) = y0.

Assume that the multi-step method leads to the recursion
formula

s
∑

i=0

aiyi+j = 0 ∀j ∈ N0.

for this ODE.
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Stability of a Multi-Step Method

Definition 3. The multi-step method is stable, if for all start values
y0, ...ys−1, the sequence yi is bounded.

Theorem 3. A multi-step method is stable if all roots of the polynomial

s
∑

i=0

aiz
i

are simple roots and contained in the disc

{z ∈ C | |z| ≤ 1}.

(A more general stability theorem is given in Stoer/Burlisch, Einführung in
die Numerische Mathematik II).

– p. 201/249



Stiff ODE’s

Let us linearize f(y, t′) at a certain point t̂, ŷ by Taylor series
in y direction:

f(ŷ, t̂) ≈ b+ A(y − ŷ).

The ODE is a stiff ODE, if A has negative eigenvalues of
different size.

Definition 4. The ODE solver is a stable ODE solver for stiff equation
systems, if

lim
i→∞

yi = 0 ∀τ > 0 and yi > 0 ∀τ > 0, i ∈ N

for the ODE

y′ = λy, y(0) = 1,

where λ < 0.
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Analysis of ODE Solvers

Apply a given ODE solver to the ODE

y′ = λy, y(0) = 1.

Often this leads to an iteration formula of the form

yi+1 = yig(λτ).

Then, stability means

|g(z)| < 1 ∀Re(z) < 0.
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Examples

explicit Euler: (not stable for stiff ODE’s)

yi+1 = yi + hf(ti, yi)

implicit Euler: (stable for stiff ODE’s)

yi+1 = yi + hf(ti+1, yi+1).
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Parabolic PDE

Let Ω ⊂ Rd be a domain.
The standard parabolic PDE is:

∂u

∂t
= α2△u+ f(t, ~x), ~x ∈ Ω, t ≥ t0,

u(t0, ~x) = u0(~x), ~x ∈ Ω, initial condition
u(t, ~x) = g(t, ~x), ~x ∈ ∂Ω, t ≥ t0, boundary condition

where, g, f, u0 are given functions.
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Discretization of a Parabolic PDE

Let Ω̄h ⊂ Ω̄ be a discretization grid.
Let Ωh = Ω̄h ∩ Ω.

ti := τi+ t0.

Let us denote ūh(ti, ~xh), i ∈ N0, ~xh ∈ Ωh

the approximate solution.
Furthermore, let us abbreviate uh(ti) = (ūh(ti, ~xh))~xh∈Ωh

.

Let us discretize △w by

L̄hwh,

where L̄h is a |Ωh| × |Ω̄h| matrix and wh ∈ R
|Ωh|.

(e.g. finite difference discretization).

In case of homogeneous boundary conditions (g = 0)
L̄h can be replaced by the |Ωh| × |Ωh| matrix Lh.
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Discretization of a Parabolic PDE

uh(t0, ~xh) = u0(~xh) ~xh ∈ Ω̄h

uh(ti, ~xh) = g(ti, ~xh) ~xh ∈ Ω̄h\Ωh, i ∈ N0.

forward difference method (explicit Euler)

ūh(ti+1) = ūh(ti) + τ
(

α2L̄hūh(ti) + fh(ti)
)

.

backward difference method (implicit Euler)

ūh(ti+1) = ūh(ti) + τ
(

α2L̄hūh(ti+1) + fh(ti+1)
)

.

Crank-Nicolson

ūh(ti+1) = ūh(ti) + τ
1

2

(

α2L̄hūh(ti) + fh(ti) +

α2L̄hūh(ti+1) + fh(ti+1)
)

.
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Fourier Stability Analysis

To analyze the stability of the previous discretization, let us consider

∂u

∂t
= α2△u, ~x ∈ Ω, t ≥ t0,

u(t0, ~x) = u0(~x), ~x ∈ Ω, initial condition

u(t, ~x) = 0, ~x ∈ ∂Ω, t ≥ t0, boundary condition

Ω := ]0, π[2.

The exact solution of this PDE is

u(t, (x, y)) =
∞
∑

ν,µ=0

aν,µ sin(νx) sin(µy) e−α2(ν2+µ2)(t−t0), where

u0(x, y) =

∞
∑

ν,µ=0

aν,µ sin(νx) sin(µy).

Observe that u(t, (x, y)) ≥ 0, if aν,µ ≥ 0∀ν, µ.
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Fourier Stability Analysis

Let Ωh := {h(i, j) | i, j = 1,m− 1} be the discretization grid.
Lemma 1. Lh has the eigenvectors

eν,µ =
(

sin(νπxi) sin(µπyj)
)

(xi,yj)∈Ωh

, where ν, µ = 1, · · · ,m−1,

with eigenvalues

λν,µ = − 4

h2

(

sin2
(

πνh

2

)

+ sin2
(

πµh

2

))

.

The eigenvalues can be estimated by

8

h2
> −λν,µ > 2π2.
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Fourier Stability Analysis

The functions (eν,µ)ν,µ=1,...,m−1 form a basis of R|Ωh|. Thus
we can write

u0 =

m−1
∑

ν,µ=1

cν,µ(t0)eν,µ.

Definition 5. The discretization of the parabolic equation is stable, if the
following condition holds:
Let the coefficients cν,µ(t0) be nonnegative.
Then, the coefficients of the approximate solution for f = 0, g = 0 are
nonnegative

cν,µ(t) ≥ 0 ∀ν, µ, t > t0.
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Analysis of Forward Difference Method

The Fourier analysis of the forward difference method

uh(ti+1) = uh(ti) + τ(α2Lhuh(ti) + fh(ti)).

leads to the explicit Euler formula (f = 0, g = 0):

cν,µ(ti+1) = (1 + τα2λν,µ)cν,µ(ti).

Stability is obtained if |1 + τα2λν,µ| < 1 and therefore

τ <
2

α2|λν,µ|
.

Thus the condition

τ <
2

α2 8
h2

=
2h2

8α2

is sufficient for the stability of the forward difference
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Analysis of Backward Difference Method

The analysis of the backward difference method

uh(ti+1) = uh(ti) + τ
(

α2Lhuh(ti+1) + fh(ti+)
)

.

leads to the implicit Euler formula (f = 0, g = 0):

cν,µ(ti+1) = cν,µ(ti)
1

1− τα2λν,µ

.

Stability is obtained independent of τ since

0 <
1

1− τα2λν,µ

< 1.
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Analysis of Crank-Nicolson

The analysis of Crank-Nicolson

uh(ti+1) = uh(ti) + τ
1

2

(

α2L̄huh(ti) + fh(ti) +

α2L̄huh(ti+1) + fh(ti+1)
)

leads to the formula (f = 0, g = 0):

cν,µ(ti+1) = cν,µ(ti)
1 + 1

2τα
2λν,µ

1− 1
2τα

2λν,µ

.

Stability is obtained independent of τ since

∣

∣

∣

∣

1 + 1
2τα

2λν,µ

1− 1
2τα

2λν,µ

∣

∣

∣

∣

< 1.

But for large |α2λν,µ|:
∣

∣

∣

1+ 1

2
τα2λν,µ

1− 1

2
τα2λν,µ

∣

∣

∣
→ 1.
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Hyperbolic PDE

Let Ω ⊂ Rd be a domain.
The standard hyperbolic PDE is:

∂2u

∂t2
= α2△u+ f(t, ~x), ~x ∈ Ω, t ≥ t0,

u(t0, ~x) = u0(~x), ~x ∈ Ω, 1. initial condition
∂u

∂t
(t0, ~x) = u1(~x), ~x ∈ Ω, 2. initial condition

u(t, ~x) = g(t, ~x), ~x ∈ ∂Ω, t ≥ t0, boundary condition

where, g, f, u0, u1 are given functions.
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Discretization of a Hyperbolic PDE

Let Ω̄h ⊂ Ω̄ be a discretization grid.
Let Ω̄h = Ωh ∩ Ω.

ti := τi+ t0.

Let us denote ūh(ti, ~xh), i ∈ N0, ~xh ∈ Ωh

the approximate solution.
Furthermore, let us abbreviate uh(ti) = (ūh(ti, ~xh))~xh∈Ωh

Let us discretize △w by

L̄hwh,

where L̄h is a |Ωh| × |Ωh| matrix and wh ∈ R
|Ωh|.

(e.g. finite difference discretization).

In case of homogeneous boundary conditions (g = 0)
L̄h can be replaced by the |Ωh| × |Ω̄h| matrix Lh.
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Discretization of a Hyperbolic PDE

First initial condition and boundary condition:

uh(t0, ~xh) = u0(~xh) ~xh ∈ Ω̄h

uh(ti, ~xh) = g(ti, ~xh) ~xh ∈ Ω̄h\Ωh, i ∈ N0.

Second initial condition:

uh(t1, ~xh) = u0(~xh) + τu1(~xh) +
1

2
τ2α2△u0(~xh).

Discretization of the PDE:

uh(ti+1) = 2uh(ti)− uh(ti−1) + τ2α2
(

L̄huh(ti) + fh(ti)
)

.
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Fourier Stability Analysis

To analyze the stability of the previous discretizations, let us consider the
case f = 0, g = 0, u1 = 0. Then, the exact solution of this PDE is

u(t, (x, y)) =
∞
∑

ν,µ=0

aν,µ sin(νx) sin(µy) cos
(

α(t− t0)
√

ν2 + µ2
)

, where

u0(x, y) =
∞
∑

ν,µ=0

aν,µ sin(νx) sin(µy).

Observe that

aν,µ sin(νx) sin(µy) cos
(

α(t− t0)
√

ν2 + µ2
)

is bounded for t → ∞.
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Fourier Stability Analysis

The functions (eν,µ)ν,µ=1,...,m−1 form a basis of R|Ωh|. Thus,
we can write

u0 =

m−1
∑

ν,µ=1

cν,µ(t0)eν,µ.

Definition 6. The discretization of the hyperbolic equation is stable, if
the following condition holds:
Assume that

cν,µ =

{

c 6= 0 for (ν, µ) = (ν ′, µ′)

0 for (ν, µ) 6= (ν ′, µ′)
.

Then, the approximate solution for f = 0, g = 0, u1 = 0 is bounded for
t → ∞.
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Analysis of the Discretization

The Fourier analysis of the discretization

uh(ti+1) = 2uh(ti)− uh(ti−1) + τ2α2
(

L̄huh(ti) + fh(ti)
)

leads to the formula (f = 0, g = 0, u1 = 0):

cν,µ(ti+1) = (2 + τ2α2λν,µ)cν,µ(ti)− cν,µ(ti−1).

Stability is obtained, if the roots of

z2 − (2 + τ2α2λν,µ)z + 1

are simple and contained in the disc {z ∈ C | |z| ≤ 1}.
This implies the CFL (Courant, Friedrich, Lewy) condition:

τ <
1√
2
h|α|−1.
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Order of Consistency and Convergence

There are slightly different definitions of consistency for
different types of ODE solvers and types of PDE’s.

There are different definitions for stability.

In numerical analysis one proves:
consistency + stability ⇒ convergence
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Order of Consistency for Elliptic PDE’s

Definition 7. Let L(u) be a differential operator on Ω and Lh(uh) a
discrete approximation of this operator on the discretization grid Ωh.

Furthermore, let Rh : C(Ω̄) → R|Ωh| be the pointwise restriction
operator. Then, the consistency order of Lh is of order O(hp), if there
exists a constant C > 0 such that

‖Rh(L(u))− Lh(Rh(u))‖ ≤ Chp.

Example 5. Consider the differential operator ∂
∂x .

The consistency order of central differences is O(h2)
and the consistency order of upwind or downwind differences is O(h).
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Order of Consistency for ODE’s

Definition 8. Let y′ = f(t, y) be an ODE on the domain [t0,∞[.
Let yi → Ψ(yi) = yi+1 be a mapping, which calculates an approximate
solution yi+1 at ti+1 = ti + τ for a given approximation yi at ti.
Then, the consistency error is of order O(τp), if there exists a constant
C > 0 such that

∣

∣τ−1(yex(ti+1)− yi+1)
∣

∣ ≤ Cτp,

where yex is an exact solution of the ODE with initial condition
yex(ti) = yi.

– p. 222/249



Consistency for Parabolic PDE

Definition 9. Let y′ = f(t, y) be a parabolic PDE on the domain
[t0,∞[.
Let yi → Ψ(yi) = yi+1 be a mapping, which calculates an approximate
solution yi+1 at ti+1 = ti + τ for a given approximation yi at ti.
Then, the consistency error is of order O(τp), if there exists a constant
C > 0 such that

∥

∥τ−1(yex(ti+1)− yi+1)
∥

∥ ≤ Cτp,

where yex is an exact solution of the parabolic PDE with initial condition
yex(ti) = yi.
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Shortly-Weller Discretization

Let Ω ⊂]ax, bx[×]ay, by[= Q be an open bounded domain.

Discretize Q by a structured grid Qh of meshsize h.

Denote Ωh := Qh ∩ Ω the interior points.

The set of regular points is:

Ωr
h := {z ∈ Ωh | z + (h, 0), z + (−h, 0), z + (0, h), z + (0,−h) ∈ Ωh}.

and the set of near boundary points: Ωn
h := Ωh\Ωr

h.

Let the set of boundary points Γh be the set

{(x, y + τ) ∈ ∂Ω | (x, y) ∈ Ωn
h, (x, y + h) 6∈ Ωh, ](x, y), (x, y + τ)[⊂ Ω}

∪ {(x, y − τ) ∈ ∂Ω | (x, y) ∈ Ωn
h, (x, y − h) 6∈ Ωh, ](x, y), (x, y − τ)[⊂ Ω}

∪ {(x+ τ, y) ∈ ∂Ω | ...} ∪ {(x− τ, y) ∈ ∂Ω | ...}.
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Shortly-Weller Discretization

For every point M = (x, y) ∈ Ωi
h denote the north point

by

N :=

{

(x, y + τ) if (x, y + h) 6∈ Ωh

(x, y + h) if (x, y + h) ∈ Ωh.

Analogously, define the points N,S,W .

Let the mesh sizes hN , hS , hW , hE be defined such that

N = (x, y + hN ), where M = (x, y),

S = (x, y − hS), where M = (x, y),

E = (x+ hE , y), where M = (x, y),

W = (x− hW , y), where M = (x, y).
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Shortly-Weller Discretization

Let us discretize the equation

−△u = f, u|∂Ω = g

as follows

u(z) = g(z) for all z ∈ Γh.

For every z ∈ Ωi
h let

−△huh(M) =

(

2

hNhS
+

2

hWhE

)

u(M)

− 2

hN (hN + hS)
u(N)− 2

hS(hN + hS)
u(S)

− 2

hW (hW + hE)
u(W )− 2

hE(hW + hE)
u(E).
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Shortly-Weller Discretization

Theorem 4. In general, the discretization matrix of the
Shortly-Weller discretization is not symmetric.

The order of consistency is:

‖(Rh(L(u))− Lh(Rh(u)))(M)‖ = O(h) ∀M ∈ Ωn
h

‖(Rh(L(u))− Lh(Rh(u)))(M)‖ = O(h2) ∀M ∈ Ωi
h.

If u ∈ C4(Ω̄), then the convergence is of order O(h2):

‖Rh(u)− uh‖∞ = O(h2).
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Direct Solvers for PDE’s

FD discretization of Poisson’s equation Mx = b,
where M is a matrix of size N = nd, d dimension.

storage time
Gauss elimination N2 = n2d N3 = n3d

Band Gauss elimination Nnd−1 = n2d−1 Nn2(d−1) = n3d−2

at d = 2 n3 n4

at d = 3 n5 n7

Nested dissection d > 2 n2d−2 n3d−3

at d = 2 n2 log n n3

at d = 3 n4 n6

Iterative multigrid nd nd
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Block Elimination

Let us write Mx = b as
(

A B

C D

)(

t

xco

)

=

(

q

p

)

,

where

M =

(

A B

C D

)

, b =

(

q

p

)

, x =

(

t

xco

)

Here co is an abbreviation for coarse.
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Block Elimination

The block decomposition leads to

Mco := D − CA−1B

bco := p− CA−1q.

One has to solve

Mcoxco = bco(2)

t = A−1(q − Bxco)(3)

Here co is an abbreviation for coarse.
Equation (2) can be solved recursively or by
Gauss-Elimination.
A−1 has to be calculated by Gauss-Elimination.
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Block Elimination

Let
{1, 2, ..., N} = A ∪B

Then

R
N = VA ⊕ VB := {v + w | v ∈ VA and w ∈ VB}

where

VA =

{

∑

i∈A
eiλi | λi ∈ R

}

,

VB =

{

∑

i∈B
eiλi | λi ∈ R

}

.
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Block Elimination

Spaces decomposition: Vk = Wk ⊕ Vk−1.
Then: RN = Wkmax

⊕ ...⊕W1 ⊕ V0

Mk =

(

Ak Bk

Ck Dk

)

where

Ak : Wk → Wk, Bk : Vk−1 → Wk,

Ck : Wk → Vk−1, Dk : Vk−1 → Vk−1,

Mk : Vk → Vk
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Nested Dissection

0 0 0 0 0 0 0 0 0
0 3 2 3 1 3 2 3 0
0 2 2 2 1 2 2 2 0
0 3 2 3 1 3 2 3 0
0 1 1 1 1 1 1 1 0
0 3 2 3 1 3 2 3 0
0 2 2 2 1 2 2 2 0
0 3 2 3 1 3 2 3 0
0 0 0 0 0 0 0 0 0

Decomposition of discretization grid:

Ωh = Ω0 ∪ Ω1 ∪ Ω2 ∪ Ω3
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Nested Dissection

Number the finest grid Ωh = {1, 2, ..., N}. Then, decompose:

{1, 2, ..., N} = Ω0 ∪ Ω1 ∪ Ω2 ∪ Ω3

Mk =

(

Ak Bk

Ck Dk

)

, xk =

(

tk
xk−1

)

, bk =

(

qk
pk

)

.

Mk−1 := Dk − CkA
−1
k Bk

bk−1 := pk − CKA−1
k qk.

Mk−1xk−1 = bk−1

tk = A−1
k (qk − Bkxk−1)

M−1
0 and A−1

k have to be calculated by Gauss-Elimination.
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Nested Dissection

The computational amount of nested dissection is
dominated by computation of M−1

0 and A−1
k . Let us estimate

this this computational amount:
Let n = 2kmax.

M0

is matrix of size O(2(d−1)kmax) = O(nd−1).
M−1

0 computation:
O(n2d−2) storage requirement.
O(n3d−3) computational requirement.
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Nested Dissection

Let n = 2kmax.
Ak

has a block-structure and consists of

2d(k−1)

blocks of size O(2(d−1)(kmax−k)).
Storage requirement for A−1

k computation:

O(

kmax
∑

k=0

2d(k−1)(2(d−1)(kmax−k))2) = O(N

kmax
∑

k=0

2(d−2)k)

= O(Nkmax) = O(n2 log(n)) if d = 2

= O(N2(d−2)kmax) = O(n2d−2) if d > 2
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Nested Dissection

Let n = 2kmax.
Ak

has a block-structure and consists of

2d(k−1)

blocks of size O(2(d−1)(kmax−k)).
Computational requirement for A−1

k computation:

O(

kmax
∑

k=0

2d(k−1)(2(d−1)(kmax−k))3) = O(N

kmax
∑

k=0

2(2d−3)k)

= O(n3d−3)
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Implementation of Nested Dissection

Implementation has to take into account that all matrices
are block matrices.
→ recursive implementation is needed.
For reasons of simplicity assume d = 2, Ω = [0, 1]2.
Define the cells (Zelle)

Zk
i,j = [ihk, jhk]× [(i+ 1)hk, (j + 1)hk],

where hk = 2−k and

I = (i, j) ∈ Ik := {(i, j) | i, j = 0, ..., 2k − 1}.

Observe that Z0
0,0 = [0, 1]2 and

Zk
i,j = Zk+1

i,j ∪ Zk+1
i+1,j ∪ Zk+1

i,j+1 ∪ Zk+1
i+1,j+1.
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Implementation of Nested Dissection

Define

Akmax

i,j := Zkmax

i,j ∩ Ωh

Bk
i,j := Ak

i,j ∩ ∂Zk
i,j

Ik
i,j := Ak

i,j\Bk
i,j

Ak−1
i,j := Bk

i,j ∪ Bk
i+1,j ∪ Bk

i,j+1 ∪ Bk
i+1,j+1 for k ≤ kmax.

Furthermore, we can define

Ω0 := B0
0,0

Ωk := Ik−1
i,j .
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Implementation of Nested Dissection

Let
V (B) := span{ei | i ∈ B}

Then define matrices, which map spaces to spaces:

Ak
I : V (Ik

I ) → V (Ik
I ), Bk

I : V (Bk
I ) → V (Ik

I ),

Ck
I : V (Ik

I ) → V (Bk
I ), Dk

I : V (Bk
I ) → V (Bk

I ),

Mk
I : V (Ak

I ) → V (Ak
I )

These matrices are stored with respect to the standard
basis {ei}. Extend matrix M : V (B) → V (A) according

M(ei) :=

{

M(ei) if ei ∈ V (B)

0 else.
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Implementation of Nested Dissection

Mk−1
i,j :=

∑

I=i,j,...,i+1,j+1

Dk
I − Ck

I (A
k
I )

−1Bk
I

bk−1
i,j :=

∑

I=i,j,...,i+1,j+1

pkI − CK
I (Ak

I )
−1qkI .

tkI = (Ak
I )

−1(qkI − Bk
I x

k−1
I )

On coarsest grid one has to solve exactly

M0x0 = b0

Equation
Mk−1xk−1 = bk−1

has to be solved recurively from coarse to fine grid.
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Implementation of Nested Dissection

How to define
Mkmax

i,j ???

In case of Finite Elements, these are the local stiffness
matrices.

In case of Poisson’s equation take the 4x4 matrix

1

h2











1 −0.5 0 −0.5

−0.5 1 −0.5 0

0 −0.5 1 −0.5

−0.5 0 −0.5 1










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Lineare Algebra with Indizes

class VectorIndex : public ExprAlg<VectorIndex> {

public:

template <class Ind> VectorIndex(const Ind& index) {

size = index.getSize(); Sn = index.getIndices();

data = new double[size];

s = new int; Smy = new int;

}

template <class A> void operator=(const ExprAlg<A>& a );

...

private:

double * data;

int size; // Laenge Vektor

int * Sn; // Nummern der globalen Indizes

int * Smy; // fuer Auswertung: globaler Index

int * s; // fuer Auswertung: lokaler Index };
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Lineare Algebra with Indizes

void VectorIndex::startI(int max_size) const {

( * s) = 0; if(size>0) ( * Smy) = Sn[( * s)];

}

double VectorIndex::getValueI(int Sglobal) const {

while(Sglobal > ( * Smy) && ( * s) < size) {

++( * s); ( * Smy) = Sn[( * s)]; }

if(( * Smy) > Sglobal || ( * s)>=size) return 0;

return data[( * s)];

}

template <class A>

void VectorIndex::operator=(const ExprAlg<A>& a) {

const A& ao(a); ao.startI(size);

for(int ss = 0;ss < size;++ss ) {

data[ss] = ao.getValueI(Sn[ss]); }

} // ----> sorted Indizes!!!
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Lineare Algebra with Indizes

Implementation of matrices with Indizes:
class MatrixIndex : public ExprAlg<...> {

public:

template <class Ind>

MatrixIndex(const Ind& indexI,const Ind& indexJ);

....

}

Operators like =,+,- are implemented such that they can be
applied to vectors and matrices with respect to different
index set:

v = b+ c

Here iteration is performed for the index set A of v.
If b or c is not defined at a certain index i ∈ A, then
getValueI(i) return 0.0.
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Lineare Algebra with Indizes

Observe that if v is defined for a index set A.
Then v is contained in the corresponding vector space:

v ∈ V (A)

A class IndexSet is needed which
stores indizes in a sequential order and
allows union of two index set by merge sort.
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Implementation of Nested Dissection

The sets
Ak

I = Bk
I ∪ Ik

I

have to be represented by objects of class IndexSet
and constructed recurively.
The matrices

Ak
I : V (Ik

I ) → V (Ik
I ), Bk

I : V (Bk
I ) → V (Ik

I ),

Ck
I : V (Ik

I ) → V (Bk
I ), Dk

I : V (Bk
I ) → V (Bk

I ),

Mk
I : V (Ak

I ) → V (Ak
I )

have to be represented by objects of class MatrixIndex
and constructed recurively.
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Implementation of Nested Dissection

The sets Ak
I ,Bk

I , Ik
I and matrices Ak

I , B
k
I , C

k
I , D

k
I , and Mk

I

have to be stored as members of leaves in an quadtree.
class Leaf {

public:
Leaf(...); ...
VectorIndex * x; ///> W
...
MatrixIndex * A; ///> W -> W
MatrixIndex * B; ///> Vb -> W
...

private:
std::vector<Leaf * > children;
IndexVector allIndizes; ///> set A
IndexVector interiorIndizes; ///> set I
IndexVector boundaryIndizes; ///> set B

};
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Implementation of Nested Dissection

Dested Dissection has to be implemented by traversing
through a quadtree with leaves of obeject class Leaf .

Efficiency mainly depends on the efficient
implementation of

matrix multiplication and
Gauss-algorithm implementation to compute A−1.

using a lineare algebra library on index sets. To this end
cache efficient implementation is very important!

– p. 249/249
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