
Simulation und wissenschaftliches

Rechnen (SiwiR)

Christoph Pflaum

– p. 1/249

Content of the Lecture

Why performance optimization?

Short introduction to computer architecture and
performance problems

Performance optimization.

Libraries and expression templates.

Finite differences, iterative solvers.

Introduction to parallelization.

Debugging.

Finite difference discretizations, stability

Ray tracing

– p. 2/249

Simulation in Fluid Dynamics

Assume that we want to compute the flow of water in a
hydroelectric power plant.

– p. 3/249

Simulation in Fluid Dynamics

It is impossible to compute the flow exactly.

We have to compute an approximate solution on a
discretization grid.

Example of a 2D discretization grid:

kx grid points

ky grid points

h

– p. 4/249

Simulation in Fluid Dynamics

kx grid points

ky grid points

h

In 3D, O(kx ∗ ky ∗ kz) data and
O(kx ∗ ky ∗ kz ∗ kt) floating-point operations are needed.

Example: kx = ky = kz = 200 and kt = 10000.
This leads to: kx ∗ ky ∗ kz = 8 ∗ 106 data and
kx ∗ ky ∗ kz ∗ kt = 8 ∗ 1010 operations.

– p. 5/249

Problems in Computer Architecture

Due to technical reasons the clock rate cannot be
arbitrary high.

In the last years the CPU performance (clock rate, ...) of
processors increased more than the performance of
memory (bandwidth, ...).

– p. 6/249

Latency and Bandwidth

Definition 1 (Latency and bandwidth, access time).

The latency L is the time needed until the execution of an
instruction can start.

The execution of every instruction needs a certain computational
time.

The bandwidth B is the maximum speed of message transfer in
Mbyte/sec (or Gbps) for an infinitely large message.
Thus, the time T for sending a message of size M is:

T = L+M/B.

The time for reading a certain amount of data from memory is often
called access time .

– p. 7/249

Fundamental Architecture of a Computer

main memory

cache

register

CPU

The performance depends on:

latency and bandwidth or
access time of the
memories and

the latency and execution
time of instructions of the
CPU.

pipeline concepts and
parallelization on
instruction level of
the processor.

– p. 8/249

Pipeline Concept of a Processor

FETCH

instructions

DECODE

instructions

COMPUTATION

and/or

LOAD / STORE

of data

data

WRITE

1 cycle 1 cycle 1 cycle2 cycle

−→ latency of a single instruction: 2 cycles
The latency of several instructions can be reduced by a
pipeline concept.
Example 1.
AMD Opteron: 15 pipeline stages
Intel Nehalem: 16 pipeline stages

– p. 9/249

Pipeline Concept of a Processor

FETCH 1 FETCH 2 FETCH 3 FETCH 4 FETCH 5

DECODE 1 DECODE 2 DECODE 3 DECODE 4

COMPUTE 1 COMPUTE 2 COMPUTE 3

COMPUTE 1 COMPUTE 2

WRITE 1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

−→ reduction of the latency by parallel computations in a pipeline
concept.

– p. 10/249

Bypassing

Example: Computation of x ∗ (a+ b).
By a “bypassing concept”, the result of a+ b can be used
directly after computing it for a multiplication with x.

– p. 11/249

Fusion of Multiply and Add

Example: Computation of x ∗ a+ b.
Several processors are able to compute one multiplication
and one addition by one instruction.

– p. 12/249

Parallel Computations in a Processor

Modern processors are able to perform several instructions
in parallel. This can be obtained by

superscalar processors and

VLIW processors (very long instruction word)
e.g. EPIC-concept
(Explicitly Parallel Instruction Computing)

Example 2.

superscalar processors: usually:
2 floating point operations and 2 integer operations and
1 read or write of data.

Itanium 2: EPIC

Radeon R600: GPU

– p. 13/249

Stalls of Pipeline-Processes

If a pipeline cannot accept a new instruction at a certain
stage, than this is called “stalled”. There exist several
reasons for this. One is that certain data are needed which
are not contained in registers. Another may be that a
previous computation has to end until the new computation
can be performed.
−→ This increases the latency time.

– p. 14/249

Access Time of Data

main memory

e.g. maximal 4GByte

cache
e.g. 32kByte or 3MByte

register
e.g. 32

CPU

access time: 0 cycles

access time: 3 cycles

access time: 32 cycles

– p. 15/249

Cache Sizes

The cache consists of several parts of different sizes.
A large cache implies a higher access time .

:
Itanium 2 cache

access time 1
L1: 16 KB

access time 5+

L2: 256 KB

access time 12+

L3: 3MB

– p. 16/249

Blocks in Memories

1 2 3 4 5 6 7 8 9 10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32

memory

block number

fully associative
block 11 can
go anywhere

direct mapped
block 11 goes to
3 = 11 mod 8

set associative (4 sets)
block 11 can
go anywhere in set 3

set
0

set
1

set
2

set
3

block number
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

block number

– p. 17/249

Example: Intel ’Nehalem’ Architektur

Nehalem L1 L2 L3

size 32KB 256 KB 2MB
line size 64 128 128

number of lines 512 2048 16,384
associative sets 64 256 1024

associative 8-way 8-way 16-way

– p. 18/249

Example: Itanium 2

Itanium 2 L1 L2 L3

size 16KB 256 KB 3MB
line size 64 128 128

number of lines 256 2048 24,576
associative sets 4 8 12

associative 64-way 256-way 2048-way
update policy write write write

through back back

– p. 19/249

Example: IBM Power 3

IBM Power 3 L1 L2

size 65KB 4MB
line size 128 128

number of lines
associative sets

associative 128-way direct mapped
update policy write write

through back

– p. 20/249

Cache Misses

Compulsory cache misses:
Every data have to be fetched a first time to the cash.
These cash misses cannot be avoided.

Capacity cache misses: Every cache has a maximal
size. Therefore it might happen, that a cash line was
overwritten by another cash line.

Conflict cache misses: If the cache is a directly mapped
or set associative cache, then it may happen, that the
cache cannot completely be used. Thus, cache lines
will be overwritten, however there are free cache lines.

– p. 21/249

Common Subexpression Elimination

Instead of
q = a+b+c;
p = a+b+d;

the compiler evaluates
t = a+b;
q = t+c;
p = t+d;

– p. 22/249

Loop-Invariant Code Motion

The compiler optimizes
for(i=0;i<n;++i)

a[i] = r * s+b[i];
by

t = r * s;
for(i=0;i<n;++i)

a[i] = t+b[i];

– p. 23/249

Evaluation of Constants

The compiler optimizes
x = 3 * 4.0 + y;

by
x = 12.0 + y;

−→ Optimization by meta-programming in C++!

– p. 24/249

Strength Reduction

For an integer i the compiler replaces
2* i

by
i+i

In FORTRAN, the compiler replaces
x** 2

by
x* x

– p. 25/249

Instruction Scheduling

Instead of
a = b+c;
d = 2.0 * a+e;
g = 2.0 * c;
q = g+b * 2.0;

the compiler could evaluate
a = b+c;
g = 2.0 * c;
d = 2.0 * a+e;
q = g+b * 2.0;

and try to optimize the use of the registers. This is a very
complex optimization problem.

– p. 26/249

Performance Optimization: Mult-Add

Several processors perform a+b* c as fast as one
multiplication. Thus,

a = b+c * d+f * g;
often is faster than

a = f * g+c * d+b;

– p. 27/249

Eliminating Overheads

There exist a lot of ways to avoid overheads.
A simple example is the following. Replace

if(sqrt(tt) < eps) { ... }
by

if(tt < eps * eps) { ... }

– p. 28/249

Loop Unrolling

Loop unrolling is the general concept to improve performance!

Instead

for(int i=0;i<n * m;++i) Comp(i);

perform

for(int i=0;i<m * n;i=i+n)

for(int j=0;j<n;j=j+1) Comp(i+j);

or

for(int i=0;i<m * n;i=i+n) {

Comp(i+0);

Comp(i+1);

...

Comp(i+n-1); }

Perform additional changes of the computations in the interior loop!

– p. 29/249

Loop Unrolling

Loop unrolling can optimize the performance of a code by

software pipelining

instruction parallelization

improvement of the memory access.

– p. 30/249

Instruction-Parallelization

10000 1e+05 1e+06

1e-05

0.0001

0.001

inst 1
inst 2
inst 3

– p. 31/249

Pentium 4 - Vectorization

The Pentium 4 architecture allows two floating point
instructions per cycle by SSE2 floating point instructions.
Using the option -xW for the Intel-Compiler this leads to a
so called “vectorization”. For example the compiler shows
the output:
cpc -O3 -xW -c main.cc
main.cc(32) : (col. 3) remark: LOOP WAS VECTORIZED.
main.cc(84) : (col. 5) remark: LOOP WAS VECTORIZED.
icpc -O3 -xW -o run main.o -lm

– p. 32/249

Pentium 4 - Vectorization

for(i=0;i<n;++i)
– p. 33/249

Pentium 4 - Vectorization

for(i=0;i<n;++i)
– p. 34/249

Improvement of Memory Access

0 5000 10000 15000 20000

0.001

0.01

0.1

unrolling 1
unrolling 2

– p. 35/249

Automatic Loop Unrolling

Loop unrolling is often automatically performed by the
compiler. But in some cases it is impossible for the compiler
to unroll a loop. An example is:

sum = 0.0;
for(int i=0;i<n;i=i+1)

for(int j=0;j<n;j=j+1) {
sum = sum + x[i][j] * (i * i + j * j);

}
By hand it is possible to do a loop unrolling with respect to i
and j.

– p. 36/249

Limit of Loop Unrolling

There is a limit for the size of loop unrolling. This limit is
caused by

a limited number of registers and

overhead caused by too small loops and a loop length,
which is not a multiple of the size of the interior loop.

– p. 37/249

Optimization of Memory Access

−→ Optimization of memory access is very important in
HPC!

The general rule is:
−→ Optimize data locality!
This means compute with data from cache!

– p. 38/249

Example in FORTRAN

dimension a(n,n),b(n,n)
LOOP A
do 10,i=1,n
do 10,j=1,n

10 a(i,j)=b(i,j) * b(i,j)+1.
and

dimension a(n,n),b(n,n)
LOOP B
do 10,j=1,n
do 10,i=1,n

10 a(i,j)=b(i,j) * b(i,j)+1.
Which version is faster?

– p. 39/249

Example in C

double a[n][n], b[n][n];
// LOOP A
for(i=0;i<n;++i)

for(j=0;j<n;++j)
a[i][j]=b[i][j] * b[i][j]+1.0;

and
double a[n][n], b[n][n];
// LOOP B
for(j=0;j<n;++j)

for(i=0;i<n;++i)
a[i][j]=b[i][j] * b[i][j]+1.0;

Now, loop A is faster!

– p. 40/249

Dynamic Memory Allocation C++

double ** a, ** b;
a = new double * [n];
b = new double * [n];
for(i=0;i<n;++i) {

a[i] = new double[n];
b[i] = new double[n];

}

// LOOP C
for(i=0;i<n;++i)

for(j=0;j<n;++j)
a[i][j]=b[i][j] * b[i][j]+1.0;

Now, the data of a are cut in several pieces. This leads to
less data locality and optimizations as vectorization cannot
be performed in an optimal way.

– p. 41/249

Efficient Dynamic Memory Allocation

The following code leads to a better data allocation:
double * a, * b;
a = new double[n * n];
b = new double[n * n];

// LOOP C
for(i=0;i<n;++i)

for(j=0;j<n;++j)
a[i * n+j]=b[i * n+j] * b[i * n+j]+1.0;

Using such a data structure, an optimal performance can
be obtained on vector machines.

– p. 42/249

Loop Fusion

Consider the follwing code.
Instead of

for(i=0;i<n;++i)
u[i] = u[i] + tau * g[i];

for(i=0;i<n;++i)
r[i] = b[i] + alpha * g[i];

implement
for(i=0;i<n;++i) {

u[i] = u[i] + tau * g[i];
r[i] = b[i] + alpha * g[i];

}

– p. 43/249

Data Layout

Construct a data layout such that the computations can be
done locally.
As an example consider the coordinates of particles. In
FORTRAN write

dimension r(3,n)
instead of

dimension rx(n), ry(n), rz(n)

– p. 44/249

Blocking

Blocking is similar to loop unrolling. Consider the matrix transposition

dimension a(n,n),b(n,n)

LOOP A

do 10,i=1,n

do 10,j=1,n

10 b(i,j)=a(j,i)
Subdivide the index set

(1, 1) ... (1, n)
... ...

...

(n, 1) ... (n, n)

in small blocks of size s ∗ s:

(k1, k2) ... (k1, k2 + s)
... ...

...

(k1 + s, k2) ... (k1 + s, k2 + s)

Then, perform the matrix transposition on each of these blocks.
The size of the cache must be larger than 2 ∗ s ∗ s.

– p. 45/249

Automatic Optimization

Compilers try to perform an automatic optimization. In
particular, FORTRAN compilers are able to optimize a code
by loop unrolling and automatic instruction parallelization.
Using C or C++, there is a problem with aliasing.
Let us consider the program
void f(double * a,double * b,double * c,double * d){

for(int i=0;i<n;++i)
a[i] = b[i] + c[i] * d[i];

} }
Then, the C compiler does not know whether b[i] and
a[i-1] point to the same value or not. Therefore, some
compilers cannot perform an automatic optimization in this
case.

– p. 46/249

Keyword restrict

To avoid the problem with aliasing some compilers support
the keyword restrict or restrict for pointers as
follows:

double * restrict a;
double * restrict b;
double * restrict c;
double * restrict d;

for(int i=0;i<n;++i)
a[i] = b[i] + c[i] * d[i];

}

– p. 47/249

Shared Memory Computer Architecture

Crossbar

memory

proc 2proc 1 proc 3 proc 4

– p. 48/249

Parallelization with OpenMP

The parallelization with OpenMP is based on

threads

the usage of pragmas like # pragma omp parallel for

– p. 49/249

Parallelization with OpenMP

A simple parallelization of for loops in OpenMP can be obtained as
follows:

#include <omp.h>

...

int main() {

...

double * __restrict a;

double * __restrict b;

double * __restrict c;

...

#pragma omp parallel for

for(int i=0;i<n;++i) {

c[i] = a[i] * a[i] + b[i] * b[i] * b[i];

}

– p. 50/249

Usage of restrict with OpenMP

Parallelization with and without restrict

– p. 51/249

private Construction in OpenMP

For more complicated constructions the simple pragma
pragma omp parallel for
is not sufficient to obtain an efficient parallelization. One
reason for poor performance of an OpenMP parallelization
might be that the threads often need the same data from
main memory.
One way to avoid this is tell the compiler, that a variable is
only used private by every thread. This can be done by the
private construction as follows:

– p. 52/249

private Construction in OpenMP

...
double * __restrict a;
double * __restrict c;
double sum;
int i,j;
...

\\ good version
#pragma omp parallel for private(j,sum)

for(i=0;i<n;++i) {
sum = 0.0;
for(j=0;j<n;++j) {

sum = sum + a[i * n+j];
}
c[i] = sum;

}
}

– p. 53/249

private Construction in OpenMP

Computational time for OpenMP parallelization with
2 threads:
n 12 120 1200 12000
sec 3.9e-7 4.6e-5 4.7e-3 4.9e-1
sec parallel (good version) 1.5e-6 2.4e-5 2.3e-3 2.4e-1

– p. 54/249

Bad Parallelization with OpenMP

...
double * __restrict a;
double * __restrict b;
double * __restrict c;
double sum;
int i,j;
...

// bad version
#pragma omp parallel for private(j,sum)

for(i=0;i<n;++i) {
sum = 0.0;
for(j=0;j<n;++j) {

sum = sum + a[j * n+i];
}
c[i] = sum;

}
} – p. 55/249

Bad Parallelization with OpenMP

This parallelization increases the computational time:
n 12 120 1200 12000
sec 3.9e-7 4.6e-5 4.7e-3 4.9e-1
sec parallel (bad version) 1.5e-6 1.1e-4 1.9e-2 3.0

– p. 56/249

Euclidian Norm

Let us assume we want to calculate the euclidian norm of a
vector

‖v‖2 =

√

√

√

√

n
∑

i=1

v2i

Then, the following code leads to the wrong result:
...
double norm;
norm = 0.0;

#pragma omp parallel for
for(i=0;i<n;++i) {

norm = norm + a[i] * a[i];
}
norm = sqrt(norm);

}
– p. 57/249

reduction Construction in OpenMP

A correct code can be obtained by the reduction
construction in OpenMP as follows:

...
double norm;
norm = 0.0;

#pragma omp parallel for reduction(+ : norm)
for(i=0;i<n;++i) {

norm = norm + a[i] * a[i];
}
norm = sqrt(norm);

}

– p. 58/249

reduction Construction in OpenMP

reduction can be applied to the operators
+, * ,-,&,|,&&,ˆ ,|| .
Here, || reduces a maximum calculation of a variable.

– p. 59/249

Not Parallelizable Loops

Consider the loop
...
for(i=1;i<n;++i)

a[i] = a[i-1]+b[i];
...

}
OpenMP will not parallelize this loop in a correct way.

– p. 60/249

Not Parallelizable Relaxation Loop

OpenMP cannot parallelize the following loop in a correct
way:

...
for(i=1;i<n-1;++i)

a[i] = 0.5 * (a[i-1]+a[i+1]);
...

}

– p. 61/249

Parallelizable Relaxation Loop

The following loop can be parallelized in a correct way by
OpenMP:

...
#pragma omp parallel for

for(i=1;i<n-1;i=i+2)
a[i] = 0.5 * (a[i-1]+a[i+1]);

#pragma omp parallel for
for(i=2;i<n-1;i=i+2)

a[i] = 0.5 * (a[i-1]+a[i+1]);
...

– p. 62/249

Inlining Construction in C++

The call of a function requires computational times. To
avoid this problem a function can be defined to be inlined.
Example:

inlining double f(double x) { ... };
Advantage:

optimization of the code in the area where the function
is called (such as common subexpression elimination
and vectorization)

no overhead by calling the function

Disadvantage:

longer compilation time

longer executable code

– p. 63/249

const Construction in C++

Parameters of functions which will not be changed should be defined to be
const .

Example:

inlining double f(const double x) { ... };

Member functions of a class which do not modify member values of the
class should be defined to be const member functions:

Example:

class A {

...

inlining double f(const double x) const { ... };

};

const can help a compiler to optimize a code.

– p. 64/249

Meta-Programming in C++

The compiler optimizes
x = 3 * 4.0 + y;

by
x = 12.0 + y;

Can we obtain such an optimization for
x = Factorial(4) + y;

where Factorial(4) mathematically means

4! = 1 ∗ 2 ∗ 3 ∗ 4 = 24

– p. 65/249

Factorial by Meta-Programming

Consider the C++ construction

template<int N>

class Factorial {

public:

enum { value = N * Factorial<N-1>::value };

};

class Factorial<1> {

public:

enum { value = 1 };

};

Then, the compiler replaces

x = Factorial<4>::value + y;

by

x = 24 + y;

– p. 66/249

Meta-Programming

Meta-Programming means to write a program, which is
evaluated during compile-time and not during runtime.

– p. 67/249

Insulation Property of a Wall

outside: cold

inside: warm

λinsulation = 0.04 W
mK

λKS = 0.56 W
mK

Figure 1: Construction of a wall

– p. 68/249

Simple Mathematical Model

−div λ gradT = 0 on Ω

T |Γout
= −10 on Γout

T |Γin
= 20 on Γin

∂T
∂~n |ΓN

= 0 on ΓN

λinsulation

λKS

Γin

Γout

ΓN

Figure 2: Model of a wall
– p. 69/249

Model Problem

−△T + cT = f on Ω

T |Γ = g on Γ

Ω = (0, L)2,

where c > 0 is a constant and L > 0 is the size of the
domain. Observe that

−div gradT = −△T = −∂2T

∂x2
− ∂2T

∂y2
.

– p. 70/249

Discretization Grid of Finite Differences

The first step in a finite difference discretization is the
construction of a discretization grid :

hy

hx

Γh

Ωh

Figure 3: Finite difference discretization grid
– p. 71/249

Finite Difference Discretization

Let Ω = (0, 1)2. Number the points of the discretization grid Ωh by:

h(1, 1), ..., h(1,m− 1), h(2, 1), ...

Then, the FD discretization leads to an equation Lh Uh = Fh, where

Lh =
1

h2

Dh −E

−E Dh

. . .
. . .

. . . −E

−E Dh

, and where

Dh =

4 −1

−1 4
. . .

. . .
. . . −1

−1 4

.

– p. 72/249

Finite Element (FE) Norms

The finite element method leads to approximations
uh ∈ C(Ω) of an exact solution u ∈ C(Ω) of a PDE.
Suitable norms for calculating the discretization error are

‖u− uh‖L∞
:= max

x∈Ω
|(u− uh)(x)|

‖u− uh‖L2
:=

√

∫

Ω

|(u− uh)(x)|2 dx

These norms have the normalization property

(u− uh)(x) = 1 ∀x, h ⇒ ‖u− uh‖ = const ∀h

In case of solutions with singularities onecan expect a
better convergence for the ‖.‖L2

norm.

– p. 73/249

Suitable Norms for FD

Let Ωh be a sequence of discretization grids.
We are looking for a sequence of norms on R|Ωh| with
similar properties for the FD method.

Example: A not suitable norm is

‖w‖ :=

√

∑

z∈Ωhi

|w(z)|2.

– p. 74/249

Suitable Norms for FD

Definition 2. We call the sequence of norms ‖ · ‖hi
on R|Ωi|

normalized, if

‖1‖hi
= 1,

where 1 is the constant function x 7→ 1.

Example 3.

‖x‖2 :=

√

1

|Ωi|
∑

z∈Ωi

x2z

‖x‖∞ := max
z∈Ωi

|xz|

– p. 75/249

Convergence of the FD Method

Theorem 1. Consider the finite difference discretization of Poisson’s
equation on Ω = (0, L)2 with meshsize h. Then, there is a constant
C > 0 such that

‖u− uh‖∞ ≤ Ch2
(∥

∥

∥

∥

∂4u

∂x4

∥

∥

∥

∥

∞
+

∥

∥

∥

∥

∂4u

∂y4

∥

∥

∥

∥

∞

)

.

Example:

If u = x2 ∗ y3, then u = uh,

If u = x4, then ‖u− uh‖∞ ≤ Ch2.

– p. 76/249

Numerical Result

Example: Poisson’s equation on (0, 1)2.
Let f(x, y) = −12.0 ∗ x2 − exp(y). Then, the exact solution of

−△u = f = −12.0 ∗ x2 − exp(y) on Ω

u|∂Ω = x4 + exp(y) on ∂Ω

is
u(x, y) = x4 + exp(y).

The following table depicts the error eh,max := ‖u− uh‖∞:

h = 0.5 0.25 0.125 0.0625 0.03125
N = 1 9 49 225 961

eh,max ≈ 0.033 0.0094 0.0024 0.00061 0.00015
eh/2,max /eh,max ≈ 0.28 0.26 0.25 0.25

– p. 77/249

How to Choose the Meshsizeh

Assume that the discretization error converges according

‖u− uh‖ ≤ Chp.

How should we choose h to obtain a discretization error
‖u− uh‖ ≤ η?
Assume that we can calculate ‖uh/2 − uh‖.
Then, the assumption ‖u− uh‖ ≈ Chp leads to

‖u− uh‖ ≈ 1

1− 2−p
‖uh/2 − uh‖.(1)

Thus, we have to choose h such that

‖uh/2 − uh‖ ≤ η(1− 2−p).

– p. 78/249

Eigenvectors and Eigenvalues ofLh

Consider the FD discretization of Poisson’s equation on the
unit square.
Then, the matrix Lh has the eigenvalues

λν,µ =
4

h2

(

sin2
(

πνh

2

)

+ sin2
(

πµh

2

))

with eigenvectors

eν,µ =
(

sin(νπxi) sin(µπyj)
)

(xi,yj)∈Ωh

where ν, µ = 1, · · · ,m−1

and h = 1
m .

Smallest eigenvalue: 4
h22 sin

2
(

πh
2

)

≈ 2π2 .

Largest eigenvalue: 4
h22 sin

2
(

π(m−1)
2m

)

≈ 8
h2 .

– p. 79/249

Eigenvectors and Eigenvalues ofLh

eigenvector e1,1 eigenvector e2,1

eigenvector

e3,3 =
(

sin(3πxi) sin(3πyj)
)

(xi,yj)∈Ωh
– p. 80/249

Direct and Iterative Solvers

The FD discretization leads to an equation system

Ahuh = bh,

where Ah is an n× n matrix and uh, bh ∈ Rn are vectors.
There are

direct methods and

iterative methods

for solving such an equation system.
↓

Both methods lead to an approximation ũh of uh.

‖uh − ũh‖ is called algebraic error.

– p. 81/249

Discretization Error and Algebraic Error

‖u− uh‖ is called discretization error.

‖uh − ũh‖ is called algebraic error.

‖u− ũh‖ is called total error.

The algebraic error should satisfy the property

‖uh − ũh‖ ≤ ‖u− uh‖α, where α ≈ 0.1.

Let the discretization satisfy ‖u− uh‖ ≤ Ch2.
Then, this implies

‖u− ũh‖ ≤ C(1 + α)h2.

– p. 82/249

Discretization Error and Algebraic Error

It is very difficult to calculate numerically the

algebraic error ‖uh − ũh‖ and the

discretization error ‖u− uh‖.

Therefore, one often calculates

the residuum norm ‖Ahũh − bh‖ or

the norm ‖ũh − ũh/2‖.

If the exact solution is known, then one can numerically
calculate the total error

total error ‖u− ũh‖.

– p. 83/249

Direct Solvers for Linear Equation Systems

The Gauss-elimination applied to a full matrix requires

O(n3) operations

O(n2) data

for solving a linear equation system with n unknowns.

The Gauss-elimination applied to a band matrix of bandwidth 2k − 1

requires

O(n ∗ k ∗ k) operations

O(n ∗ k) data.

A band matrix of
bandwidth k

has the form:

a11 . . . a1k
... a22

. . .
. . .

ak1
. . .

. . .
. . . an−k+1,n

. . .
. . . an−1,n−1

...

an,n−k+1 . . . ann

– p. 84/249

Direct Solvers for FD Discretization

Now consider the matrix of the FD discretization of Poisson’s equation on
Ω = (0, 1)2. The discretization matrix is a band matrix of size n = (m− 1)2

and bandwidth 2m− 1, since h = 1
m

Lh =
1

h2

Dh −E

−E Dh

. . .
. . .

. . . −E

−E Dh

, where Dh =

4 −1

−1 4
. . .

. . .
. . . −1

−1 4

Then, the Gauss-elimination applied to the band matrix Lh requires

O(n2) operations

O(n1.5) data.

– p. 85/249

Iterative Solvers

Consider the linear equation system Ax = b.
An iterative solver for solving a linear equation system is a
mapping

S : Rn → R
n

with start vector x0 ∈ R such that the sequence (xi)i∈N
defined by

xi+1 = S(xi)
converges to x:

lim
i→∞

xi = x.

Obviously, x should satisfy the fix point property x = S(x).

– p. 86/249

Relaxation

Relaxation of the i-th unknown xi:
Correct xoldi by xnewi such that the i-th equation of the
equation system

A · x = b

is correct.

– p. 87/249

Numbering of GS Relaxation

For Gauss-Seidel iteration one often applies lexicographical
and red-black numbering of the grid points.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 14 2 15 3

16 4 17 5 18

6 19 7 20 8

21 9 22 10 23

11 24 12 25 13

– p. 88/249

Gradient Method

Let A be a symmetric positive definite n× n matrix
and b ∈ Rn.
The gradient method for solving

Ax = b

is
Start with x0 and calculate the sequence xk by:

dk = b−Axk

αk =
dTk dk

dTkAdk

xk+1 = xk + αkdk,

where k = 0, 1, 2,

– p. 89/249

cg Iteration

Let the start solution be x0. Then: g0 = Ax0 − b

δ1 = gT0 g0 if δ1 ≤ ǫ stop

d1 = −g0

recursion: k = 1, . . . : hk = Adk

α =
δk

dTk hk

xk := xk−1 + αdk

gk := gk−1 + αhk

δk+1 = gTk gk if δk+1 ≤ ǫ stop

βk = δk+1/δk

dk+1 = −gk + βkdk

– p. 90/249

Estimation of the Algebraic Error

Assume we want to solve

Ax = b

and we get the approximation x̃. A practical problem is:

How large is the algebraic error ‖x̃− x‖?

Assume, we apply an iterative solver.
How many iterations do we have to perform to obtain a
small algebraic error?

How to choose ǫ in the cg-iteration?

Assume, you have implemented two iterative solvers.
Which one is faster?

But: We do not know x !

– p. 91/249

Estimation of the Algebraic Error for Tests

For testing a code one does the following test:
Construct right hand sides b such that the exact solution x is
well-known.
Example:

Choose b = 0.

FD on a unit square: Choose u = x2y3.

Start with x0 = 1.
Then, one can compute the algebraic error ‖x̃− x‖ and one
can compare two different codes.

– p. 92/249

A Hard Approach

If the exact solution is unknown, one applies the following
difficult approach:
Calculate a very good approximation xe of x by a time
consuming solver. Then, consider

‖x̃− xe‖

as the algebraic error ‖x̃− x‖.

– p. 93/249

Estimation of Algebraic Error by Residuum

The residuum is defined as

r := Ax̃− b

Then, ‖x̃− x‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖.
Example:

FD, Poisson on]0, 1[2: ‖A−1‖2 = λ−1
1 ≈ 1

2π2 .

Assume that x̃− x = em−1,m−1 + h2e1,1. Then,

‖x̃− x‖2 ≈ 1 and ‖A−1‖2‖r‖2 ≈ h−2.

Assume that x̃− x = h2em−1,m−1 + e1,1. Then,

‖x̃− x‖2 ≈ 1 and ‖A−1‖2‖r‖2 ≈ 1.

Thus, if ‖r‖ is small, then ‖x̃− x‖2 can be large or small!
– p. 94/249

Estimation of Algebraic Error by Residuum

The residuum is defined as

r := Ax̃− b

Then, if ‖r‖ is small, then ‖x̃− x‖2 can be large or small!
Therefore, do not use the size of the residuum to compare
two different iterative algorithms.
Example:
FD, Poisson on]0, 1[2: We want to obtain ‖x̃− x‖2 = O(h2).

MG: Iterate such that ‖r‖ = O(1) .

SSOR: Iterate such that ‖r‖ = O(h2) .

– p. 95/249

Property of Iterative Solvers

Let x0 ∈ Rn and

S : Rn → R
n

be an iterative solver such that the sequence (xi)i∈N defined
by

xi+1 = S(xi)
converges to x. Most of the iterative solvers have the
following property:
There exists a constant 0 < q < 1 and s, imin ∈ N such that

‖xi+s+1 − xi+s‖ ≤ qs‖xi+1 − xi‖

for every i > imin. q is called convergence rate of S.

– p. 96/249

Algebraic Error of an Iterative Solver

Theorem 2. Let 0 < q < 1, s, imin ∈ N, x0 ∈ Rn and

S : Rn → R
n

be an iterative solver such that the sequence (xi)i∈N defined by

xi+1 = S(xi)

converges to x and satisfies

‖xi+2 − xi+1‖ ≤ q‖xi+1 − xi‖

for every i > imin. Then, the algebraic error can be estimated by

‖x− xi‖ ≤ ‖xi+1 − xi‖(1− q)−1.

– p. 97/249

Estimation of the Convergence

We want to find a small parameter such that

‖xi+2 − xi+1‖ ≤ q‖xi+1 − xi‖.

Several iterative solvers have the following property:
There exists a constant 0 < q < 1 and s, imin ∈ N such that

‖xi+s+1 − xi+s‖ ≤ qs‖xi+1 − xi‖.

for every i > imin.

Calculate q̃ = ‖xi+2−xi+1‖
‖xi+1−xi‖ for large i.

Calculate q̃ =
(

‖xi+s+1−xi+s‖
‖xi+1−xi‖

)
1

s

for large i, s ≈ 5− 20.

Take q̃ as an approximation of q.
– p. 98/249

Convergence Rate of Linear Iterative Solvers

Let
S(xi) = Cxi + d

be an iterative solver (C matrix and d vector).
Then, the convergence rate q does not depend on the right
hand side b and not on the start value x0
(with the exception of choosing an eigenvector as x− x0).
Example 4. The Gauss-Seidel iteration is a linear iterative solver. To
estimate the convergence rate, choose the right hand side 0 and the
start vector x0 = 1. Then,

q̃ =
‖xi+1‖
‖xi‖

is an approximate value of the convergence rate q for large values i.
Remark: To avoid overflow and underflow, additionally normalize the
vectors xi.

– p. 99/249

Estimation of the Convergence

We want to find a small parameter q such that

‖xi+2 − xi+1‖ ≤ q‖xi+1 − xi‖.

Another way to estimate the convergence rate is to study
the behavior of the residuum as follows:
Let

ri = Axi − b

Calculate q̃ = ‖ri+1‖
‖ri‖ for large i.

Calculate q̃ =
(

‖ri+s‖
‖ri‖

)
1

s

for large i, s ≈ 1− 20.

Take q̃ as an approximation of q.

– p. 100/249

Meshsize and Iteration Number

Assume we want to obtain a total error ‖u− uh,i‖ ≤ η!

1. For every meshsize h calculate q̃ by

q̃ =

(

‖uih+s+1 − uih+s‖
‖uih+1 − uih‖

)
1

s

for large ih and suitable s ≈ 1− 20.

2. Calculate ih such that
‖uh,ih+1 − uh,ih‖(1− q̃)−1 ≤ 1

4η(1− 2−p).

3. Choose h such that ‖uh,ih − uh/2,ih/2‖ ≤ 1
4η(1− 2−p).

Then, we obtain ‖uh − uh/2‖ ≤ 3
4η(1− 2−p) and thus

‖u− uh,ih‖ ≤ η.
– p. 101/249

Is there a Bug in the Code or not?

If a simulation program does not simulate a physical
process in a correct way, there can be different reasons for
this:

inaccuracy of the model.

error in the mathematical solver.

error (bug) in the code.

There exist different bugs:

syntax error,

wrong usage of memory,

logical sequence of the code is not correct, or

the mathematical formula is not implemented in a
correct way.

– p. 102/249

Debugging with gdb

Compile with option -g and execute gdb code .

b ln Set breakpoint at line number ln.

r Run code.

s Make one step.

S Make one step and do not go into functions.

p u Print u.

b Backtrace how the code went to a certain point in
the code.

up Go up the stack frame.

down Go down the stack frame.

c Continue running the code.

– p. 103/249

Apply intelligent print statements!

Instead of using the command p in gdb write your own
intelligent print statements, which gdb does not contain.
Example:

Print_L_infty(u);
Prints the L∞ norm of a vector u.

– p. 104/249

Finding a Bug in a Radio

– p. 105/249

Finding a Bug in a Radio

– p. 106/249

Finding a Bug in a Radio

– p. 107/249

Finding a Bug in a Radio

– p. 108/249

Hierarchical Search of Bug

Location of the bug

– p. 109/249

Reduction of the Problem

A very important concept is the concept to
reduce a big problem to a smaller one.
Of course the hierarchical search can be treated as such a concept. But
there are also other ways to reduce a problem.

Skip parts of the code in an hierarchical way such that the resulting
code still contains the bug.

Comment out statements in the code. As an example omit coarse
grid correction in a multigrid code.

Write a smaller code which contains the bug.

Find a problem with a smaller problem size, such that the bug
appears!

Find a problem with known exact solution or a more simple solution!

If a reduction of the code is not possible any more, then analyze the code.

– p. 110/249

Memory check by valgrind

Call valgrind by
valgrind --tool=memcheck --leak-check=yes run

Use of valgrind for:

finding causes for segmentation faults.

finding memory leaks

– p. 111/249

Warnings in an HPC code

Warnings in a code are very useful to avoid bugs in a code.

class vector {

public:

vector(int dim_);

double operator[] (int i) {

if(i< 0) cout << ‘‘i negative ‘‘ << endl;

if(i>=dim) cout << ‘‘i too large‘‘ << endl;

return a[i];

}

private:

int dim;

double * a;

}

But this implementation of operator[](int i) is very inefficient.

– p. 112/249

Warnings in an HPC code

To increase performance implement a developer version as in the
following example:

#define developer_version true

// #define developer_version false

...

double vector::operator[] (int i) {

if(developer_version) {

if(i< 0) cout << ‘‘i negative ‘‘ << endl;

if(i>=dim) cout << ‘‘i too large‘‘ << endl;

}

return a[i];

}

or one can use assert as follows:
– p. 113/249

Avoid == Sign

Try to avoid the == sign. Instead use ≥ or ≤.

– p. 114/249

Avoid double Comparison

Example:
Instead of

double x,h;
h = 1.0 / 10.0;
for(x=0.0;x<=1.0;x=x+h) {

...
}

write
double x,h;
h = 1.0 / 10.0;
for(int i=0;i<10;++i) {

x = i * h;
...

}

– p. 115/249

Mathematical Error or Bug in the Code?

Often it is difficult to decide, if there is

an inaccuracy in the model,

an error in the mathematical solver, or

a bug in the code.

This is one of the reasons why a simulation code must be
developed in several modules. Each of the modules must
be tested in detail.

– p. 116/249

Test Frame for Module Test

Implement a test frame for modules. This frame gives a module certain
input data and requires certain output data. If the output data are correct,
then the module is expected to be correct.

module 1

module 2

test frame
main module

– p. 117/249

Integration and Regression Test

Using the test frame, apply the same tests for each
module while developing the code and adding new
modules.
This is called integration test.

Store results of your tests in a data file. Compare new
test results with older test results.
This is called regression test.

– p. 118/249

Finding Test Functions

The general concept is to calculate the right hand side for a
given exact solution. These exact solution are the test
functions.
There are different kinds of test functions:

function 0, 1, x, y,

functions with special properties:
u = sin(x ∗ π) sinh(y ∗ π), u = et sin(x ∗ π)
u = x2 ∗ y3

symmetric solutions like u = x5 ∗ y5.
general functions. Calculate right hand side by a
computer manipulation program (maple,mathematica).

First, test your code with the simplest one!

– p. 119/249

Test Parameters

Consider the PDE:

∂u

∂t
= −△u+ aw − f

∂w

∂t
= −△w + bu− g

Parameters in a FD discretization are:

physical parameters a, b.

meshsize h, timestep τ .

number of grid points N , number of timesteps m.

First, test your code for physically not correct parameters:

a, b = 0, +
−1, +

−10, ...

N = 1 and m = 1, ...

– p. 120/249

Test Part of the PDE

Instead of

∂u

∂t
= −△u+ aw − f

∂w

∂t
= −△w + bu− g

first test the stationary scalar equation:

−△u+ aw = f

and the stationary system:

−△u+ aw = f

−△w + bu = g.

– p. 121/249

Test Convergence

Test the convergence of your discretization for different
test functions and parameters in the equation.

Test the convergence rate of your iterative solver for
different parameters.

– p. 122/249

Test of an Unstructured Grid Code

Assume there is a bug in your unstructured grid code with a
complicated unstructured grid like:

−→ To Calculate the matrix elements in each step of the
code by hand is too complicated!

– p. 123/249

Test of an Unstructured Grid Code

To test your code let your unstructured grid generator
generate a simple structured grid like

or

and test your code.
−→ Change x and y coordinates and test symmetry of your
code!

– p. 124/249

General Software Development

implementation

module test

integration test

system test

What does the user want to have?

How to realize the requirements by software?

Write the realization!

Test the realization!

Test the design spec!

Test the requirement spec!

requirement spec.

design specification

– p. 125/249

Implement and Test

Build up your code step by step!
Example: Write a code for

−△u+ aw = f

and then for

−△u+ aw = f

−△w + bu = g

and at last for:

∂u

∂t
= −△u+ aw − f

∂w

∂t
= −△w + bu− g.

Implement one module and test it!
– p. 126/249

Types of Modules

vector library (contains matrix multiplication, use
libraries like LAPACK)

grid generator

linear equation solver

calculation of stiffness matrix

parallelization module

input, output

applications (different fluid dynamics applications)

– p. 127/249

Problems in PDE Software Development

Black box solvers which are independent of the PDE
and the discretization would be very helpful for the
software development (algebraic multigrid (AMG), direct
solver). But the optimal solver depends on the PDE and
its discretization.

Optimal solvers use the data structure of the
discretization.

Complicated data structure is needed for adaptive
parallel solvers with load balancing.

It is difficult to describe suitable interfaces between
solvers.

A clear software design often is in contradiction to
efficiency. Therefore, expression templates and other
template constructions are needed!

– p. 128/249

Operator Overloading for Vector Class

Consider the vector class
class vector {

public:
vector(int l);
double operator[](int i) { return p[i]; }
...

private:
int length;
double * p;

};
How should we implement an operator

vector operator+(vector &a, vector &b)
in an efficient way?

– p. 129/249

Operator Overloading for Small Vectors

Example: vector class complex:
class complex {

public:
complex(double& re, double& im);
...
double Re, Im;

};

complex operator+(complex &a, complex& b) {
return complex(a.Re + b.Re,a.Im + b.Im);

}
In case of longer vectors introduce the length of the vector
as a template parameter.

– p. 130/249

Vector Class for Long Vectors

class vector {
public:

vector(int l) { p = new double[l];
length = l; };

double operator[](int i) { return p[i]; }
...

private:
int length;
double * p;

};
Problem:

Should vector operator+(vector &a, vector
&b) allocate an auxiliary vector?

Efficient implementation of c = a+b+d; requires only
one loop!

– p. 131/249

Realization of an Efficient Operator+

Implement operator+ such that it gives back an object,
which is able to add two vectors:

class add_vector {
public:

add_vector(double& * a, double& * b)
: pa(a), pb(b) {};

double operator[](int i) const
{ return pa[i] + pb[i]; }

...
private:

double * pa, * pb;
};

– p. 132/249

Expression Template - Wrapper Class

To construct expression templates, we first need a wrapper
class, which represents all possible expressions:
template<class A>
class DExpr {

private:
A a_;

public:
DExpr(const A& x)

: a_(x) {}
double operator[](int i) const

{ return a_.[i]; }
};

– p. 133/249

Expression Template - Operator +

template<class A, class B>
class DExprSum {

const A a_; const B b_;
public:

DExprSum(const A& a, const B& b)
: a_(a), b_(b) {}

double operator[](int i) const {
return a_.[i] + b_.[i]; };

};

template<class A, class B>
DExpr<DExprSum<DExpr<A>, DExpr > >
operator+(const DExpr<A>& a,const DExpr& b) {

typedef DExprSum<DExpr<A>, DExpr > ExprT;
return DExpr<ExprT>(ExprT(a,b));

}
– p. 134/249

Properties of Expression

efficient implementation by inlining.

parallelization by OpenMP is possible.

user friendly interface.

– p. 135/249

Expression Tree

The expression
d = a + b + c;
leads to the following expression tree:

DExpr<DExprSum<Dvector,Dvector>>

DExpr<DExprSum<DExpr<DExprSum<Dvector,Dvector>>,Dvector>>

Dvector Dvector

Dvector

– p. 136/249

First Simplification

template<class A, class B, class Op>

class DExprBinOp {

const A a_; const B b_;

public:

DExprBinOp(const A& a, const B& b) : a_(a), b_(b) {}

double operator[](int i) const {

return Op::apply(a_.[i], b_.[i]);};

};

class DApSum {

public:

DApSum() { }

static inline double apply(double a, double b)

{ return a+b; }

};

– p. 137/249

Second Simplification

template <class A> struct Expr{

inline const A& operator˜() const{

return static_cast<const A&>(* this);}

};

class vector : public Expr<vector> {

public:

...

template <class A>

void operator=(const Expr<A>& a) {

for(int i=0;i<length;++i) {

p[i] = (˜a).[i];

}}

...

};

– p. 138/249

Second Simplification

template <class A, class B>

class DExprSum : public Expr<DExprSum<A,B> >{

const A& a_; const B& b_;

public:

DExprSum(const A& a, const B& b)

: a_(a), b_(b){}

double operator[](int i) const {

return a_.[i] + b_.[i]; };

}

template <class A, class B>

inline DExprSum<A,B> operator+ (const Expr<A>& a, const Ex pr&

return DExprSum<A,B>(˜a,˜b);

}

– p. 139/249

cg with Expression Templates

r = A * u - f;
d = -r;
delta = product(r,r);
for(i=1;i<=iteration && delta > eps;++i) {

g = A* d;
tau = delta / product(d,g);
r = r + tau * g;
u = u + tau * d;
delta_prime = product(r,r);
beta = delta_prime / delta;
delta = delta_prime;
d = beta * d - r;

}

– p. 140/249

Automatic Parallelization

code

application

serial
library

parallel
library

Automatic parallelization means that only a change of the
included library leads to a parallel code.

– p. 141/249

Automatic Parallelization

Automatic parallelization means that only a change of the
included library leads to a parallel code.
Example:
template <class A>
void vector::operator=(const Expr<A>& a) {

#pragma omp parallel for
for(int i=0;i<length;++i) {

p[i] = (˜a).[i];
}

}

– p. 142/249

Remark on Efficiency

In some cases a straight forward implementation of
expression templates leads to less an efficient codes than a
direct implementation. The reason is that the compiler
cannot see a difference between expressions like

a = b+b+b+b;
and

a = b+c+d+e;
To avoid this problem one can construct enumerated
variables.

variable<1> a;
variable<2> b;
....

Here the class variable<n> has an additional template
parameter n.

– p. 143/249

Expression Templates for Vectors

Construct operators for operations between

vectors

matrix and vector and

matrices.

Blitz++ is such a library.

– p. 144/249

Expression Templates on Structured Grids

Let us assume that we want to perform finite difference
operations on a 2D-structured grid Ωh.
Implement expression templates such that

u[I][J] = 0.25 * (u[I+1][J]+u[I-1][J]+
u[I][J+1]+u[I][J-1]);

performs a red black Gauss-Seidel iteration for Poisson’s
equation on Ωh. Here,

u a vector on the grid Ωh

u[I][J] represents u(ih, jh)

u[I + 1][J] represents u((i+ 1)h, jh)

...

Automatic parallelization of the above expression template
implementation is possible.

– p. 145/249

Expression Templates on Structured Grids

A Jacobi-iteration for Poisson’s equation has to be
implemented as follows:

r[I][J] = 0.25 * (u[I+1][J]+u[I-1][J]+
u[I][J+1]+u[I][J-1]);

u[I][J] = r[I][J];

– p. 146/249

Expression Templates on Structured Grids

One also can implement an operator Laplace FD(u)
representing the mathematical operator

1

h2

(

4 ∗ u(ih, jh) −u((i+ 1)h, jh)− u(ih, (j + 1)h)

−u((i− 1)h, jh)− u(ih, (j − 1)h)
)

.

Let Laplace FD diag() be the corresponding diagonal
coefficient vector of Laplace FD(u) . Then, a
Gauss-Seidel iteration for −△u = f can be implemented as
follows

u = u - (Laplace_FD(u)+f)/ Laplace_FD_diag();
and Jacobi by

r = u - (Laplace_FD(u)+f)/ Laplace_FD_diag();
u = r;

– p. 147/249

A Suitable Interface for PDE’s

Consider the following implementation of Gauss-Seidel:
u[I][J] = 0.25 * (u[I+1][J]+u[I-1][J]+

u[I][J+1]+u[I][J-1]);
Problems:

What is the range of I and J?

How, to set values at the boundary?

How, to implement boundary conditions?

– p. 148/249

A Suitable Interface for PDE’s

A suitable language for implementing PDE solvers is a
current research topic. An optimal interface language is
unknown up to now!
Suggestions:

geometric objects - algebraic objects

restriction operator to connect geometric objects and
algebraic objects.

vectors on grids and pure algebraic vectors.

– p. 149/249

Geometric Objects - Algebraic Objects!

Geometric objects:
vector3D Ma(0.0,2.0,1.0);
vector3D Mb(0.0,0.0,1.0);
Ball ball_a(1.0, Ma);

// domain with radius 1.0 at point Ma
Ball ball_b(1.2, Mb);

// domain with radius 1.2 at point Mb
...

Domain domain = ball_a || ball_b;

Algebraic objects:
vector v1(1000), v2(1000), v3(1000);
...
v3 = v1 + v2;

– p. 150/249

Discretization Grid - Subgrids!

// Geometric objects:
Domain domain a = ...; // Ωa

Domain domain b = ...; // Ωb

Grid grid(domain a,h); // Ω̄a
h

// grid on domain a with meshsize h

Subgrid subgrid(grid,domain b); // Ω̄a
h ∩ Ωb

Boundary subgrid boundary(grid); // Γa
h = Ω̄a

h ∩ ∂Ωa

Interior subgrid interior(grid); // Ωa
h

Boundary subgrid Dirichlet(boundary,domain b);

// Γa
h ∩ Ωb

– p. 151/249

Algebraic Vectors on a Grid

// Geometric objects:
Domain domain a = ...; // Ωa

Grid grid(domain a,h); // Ω̄a
h

// grid on domain a with meshsize h

Boundary subgrid boundary(grid); // Γa
h = Ω̄a

h ∩ ∂Ωa

Interior subgrid interior(grid); // Ωa
h = Ω̄a

h\∂Ωa

// Variable: vector on a grid (algebraic vector with geometric information)

Variable u(&grid), f(&grid); // u, f ∈ R
|Ω̄a

h|

coordinate x X; coordinate y Y; // coordinates

// Application of the restriction operator

u = X* X* Y* Y | boundary;

– p. 152/249

Poisson with Dirichlet Boundary Conditions

// Geometric objects:
Domain domain a = ...; // Ωa

Grid grid(domain a,h); // Ω̄a
h

// grid on domain a with meshsize h

Boundary subgrid boundary(grid); // Γa
h = Ω̄a

h ∩ ∂Ωa

Interior subgrid interior(grid); // Ωa
h = Ω̄a

h\∂Ωa

// Variable: vector on a grid (algebraic vector with geometric information)

Variable u(&grid), f(&grid); // u, f ∈ R
|Ω̄a

h|

coordinate x X; coordinate y Y; // coordinates

// Application of the restriction operator

u = X* X* Y* Y | boundary;

f = -2 * (X * X+Y* Y) | interior;

for(int i=1;i<50;++i)

u = u-(Laplace_FD(u)+f) / Laplace_FD_diag() | interior;

– p. 153/249

Parallelization Concepts

One can distinguish the following parallelization concepts:

Shared memory parallelization
Parallelization with one main memory and several
different processors
NUMA architecture (Non-Uniform Memory Access).

Distributed memory parallelization

Hybrid parallelization with a shared memory and a
distributed memory

Vectorization. One processor can perform parallel
computations on long vectors.

– p. 154/249

MPI - Message Passing Interface

MPI is a library language for C, C++ and FORTRAN.

There exist different MPI libraries. MPICH and
MPI-LAM are one of them.

The MPI library is included by mpi.h .

Run an MPI code by
mpirun -np p code

Here p is the number of processors.

– p. 155/249

MPI - Message Passing Interface

Every processor runs the same program with a different
rank.

Data are send by MPI-functions from one processor to
the other.
All MPI-functions have the prefix MPI .

Data are send from one processor to the other of a
certain communicator. The rank of the processor
depends on the communicator.
Here, we use only the communicator MPI COMMWORLD
which is of type MPI Comm.

– p. 156/249

First MPI - Functions

Let us describe the most elementary MPI functions:
int MPI_Init(int * argc, char *** argv);
int MPI_Comm_size(MPI_Comm comm, int * size);
int MPI_Comm_rank(MPI_Comm comm, int * rank);
int MPI_Comm_Finalize();

size is the total number p of processors and
rank the number from 0, ..., p− 1.
The return value of these function is an information about
the error. This will be discussed later.

– p. 157/249

MPI_Bcast and MPI_Reduce

MPI Bcast sends data from processor with number root to all other
processors.
MPI Reduce applies an operation to data of all processors. The result is
sent to root.

int MPI_Bcast(void * buf, int count, MPI_Datatype datatype,

int root, MPI_Comm comm);

int MPI_Reduce(void * sendbuf, void * recvbuf, int count,

MPI_Datatype datatype, MPI_Op op,

int root, MPI_Comm comm);

Pointers (like buf) point to arrays of type datatype and length count .
Possible data types for MPI Datatype are:

MPI_INT, MPI_DOUBLE, MPI_LONG, MPI_CHAR, ...

– p. 158/249

Example Numerical Integration

The trapezoidal rule is the following rule for numerical
integration:

∫ 1

0

f(x)dx ≈ h

n
∑

i=1

f
(

h(i− 0.5)
)

where h = 1
n . To parallelize this formula let us assume that

n = kp, where p is the number of processors. Then, we get

∫ 1

0

f(x)dx ≈
p
∑

j=1

h

k
∑

i=1

f
(

h(((j − 1)k + i)− 0.5)
)

– p. 159/249

Send and Receive with Blocking

MPI send sends data to the processor with destination rank dest and
with tag (german: Anhänger, Etikett): tag .
Valid tags are values from 0 to 32767.
MPI Recv receives data from processor with source rank source . This
function returns the status status .

int MPI_Send(void * buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm);

int MPI_Recv(void * buf, int count, MPI_Datatype datatype,

int source, int tag,

MPI_Comm comm, MPI_Status * status);

status provides the following informations:

status.MPI SOURCE

status.MPI TAG

For other functions, status can provide informations about the error.

– p. 160/249

Example for Send and Receive

if(my_rank!=0)

MPI_Send(&my_integral,1, MPI_DOUBLE,0,

10+my_rank, MPI_COMM_WORLD);

else {

double source_integral;

MPI_Status status;

integral = my_integral

for(int source=1;source<p;++source) {

MPI_Recv(&source_integral,1, MPI_DOUBLE,source,

10+source, MPI_COMM_WORLD, &status);

integral = integral + source_integral;

cout << " I got message from: " << source << endl;

}

}

– p. 161/249

Improvement by MPI_ANY...

if(my_rank!=0)

MPI_Send(&my_integral,1, MPI_DOUBLE,0,

10+my_rank, MPI_COMM_WORLD);

else {

double source_integral;

MPI_Status status;

integral = my_integral

for(int source=1;source<p;++source) {

MPI_Recv(&source_integral,1, MPI_DOUBLE,MPI_ANY_SOUR CE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

integral = integral + source_integral;

cout << " I got message from: "

<< status.MPI_SOURCE << endl;

}

}
– p. 162/249

Send and Receive without Blocking

int MPI_Isend(void * buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm,

MPI_Request * request);

int MPI_Irecv(void * buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,

MPI_Request * request);

int MPI_Test(MPI_Request * request, int * flag,

MPI_Status * status);

int MPI_Wait(MPI_Request * request, MPI_Status * status);

int MPI_Waitall(int count,MPI_Request * array_of_request,

MPI_Status * array_of_statuses);

– p. 163/249

double * source_integral;

MPI_Request * req; MPI_Status * status;

req = new MPI_Request[p-1];

status = new MPI_Status[p-1];

source_integral = new double[p];

if(my_rank!=0) {

MPI_Isend(&my_integral,1, MPI_DOUBLE,0,

10+my_rank, MPI_COMM_WORLD,&req[0]);

MPI_Waitall(1,req,status); }

else {

source_integral[0] = my_integral;

for(int source=1;source<p;++source) {

MPI_Irecv(&source_integral[source],1, MPI_DOUBLE,sou rce,

10+source, MPI_COMM_WORLD, &req[source-1]);

}

MPI_Waitall(p-1,req,status);

integral=0.0;

for(int source=0;source<p;++source) {

– p. 164/249

Error Handlers

There are two different error handlers:

MPI ERRORSAREFATAL (default): This error handler
forces to abort all MPI processes.

MPI ERRORSRETURN: Now, the MPI-function returns an
error information.

One can set the handler MPI ERRORSRETURNby
MPI_Errhandler_set(MPI_COMM_WORLD,

MPI_ERRORS_RETURN);

– p. 165/249

Error Handler MPI ERRORSRETURN

Let errcode be a return value of an MPI-function. Then,

errcode==MPI SUCCESS(This means there is no
error.), or

errcode can be decoded by

int MPI_Error_class(int errcode,
int * errorclass)

Possible values for * errorclass depend on the MPI
implementation. In MPI-1 the following classes are defined:

MPI_SUCCESS
MPI_ERR_RANK
MPI_ERR_BUFFER
...

– p. 166/249

Test Incoming Message

Sometimes a process would like to know, whether there is a
process sending a message. This can be tested by
MPI Iprobe .
Example

if(my_rank==0) {
MPI_Status status; int flag = false;
MPI_Iprobe(MPI_ANY_SOURCE,2,MPI_my_rank,

&flag, &status);
if(flag==true) {

int rank_from = status.MPI_SOURCE;

MPI_Recv(buffer, num_data,
MPI_DOUBLE,rank_from,
2,MPI_my_rank, &status); }}

– p. 167/249

Debugging

A parallel debugger is totalview.
The running state on every processor is reported on a
different window.

– p. 168/249

Parallelization of PDE-Solvers

Let us assume that a PDE is discretized on the
discretization grid Ωh.
A distributed memory parallelization of algorithms on Ωh is
based on a partition of Ωh:

Ωh =

p
⋃

i=1

Ωi
h.

An optimal partitioning depends on

the “sequential flow” of the algorithm,

the amount of data to be sent, and

the amount of computations, which have to be
performed on each partition. This computational
amount should be balanced on the partitions (load
balancing).

– p. 169/249

Optimal Partitioning for Relaxation Methods

P2

P1

P3

P4

P1

P2 P3

P4

point approach cell approach

– p. 170/249

Cell Partitioning

P2

P1

P3

P4

Ωh = {(ih, jh) | i, j = 0, ..., N−1},

where h = 1
N−1 and

N =
√
pn, n,N ∈ N.

Ωk,s
h = {((kn+ i)h, (sn+ j)h) | i, j = 0, ..., n − 1},

where k, s = 0, ...,
√
p− 1. Then,

Ωh =

√
p−1
⋃

k,s=0

Ωk,s
h .

– p. 171/249

Cell Partitioning

PM

PN PNE

PE

PSEPSPSW

PW

PNW For the evaluation of stencil
operators, data of points on
neighbor processors are
needed.
These are the data at ghost
points:

Ω̂k,s
h \Ωk,s

h

where

Ω̂k,s
h = {((kn+ i)h, (sn + j)h) | i, j = −1, ..., n} ∩ Ωh

for k, s = 0, ...,
√
p− 1.

– p. 172/249

Update of Data for Jacobi Iteration

PM

PN PNE

PE

PSEPSPSW

PW

PNW

In a Jacobi iteration,
data have to be sent and re-
ceived from neighbor processors.
Let N,S,NW, ... be the indices of
the neighbor processor with index
M = (k, s).

Then, before every Jacobi iteration the data
at points Ω̂M

h ∩ ΩP
h have to be sent from processor P

to processor M .
Let us denote this procedure Send(P);

– p. 173/249

Example Code

Implement first MPI Irecv then MPI Isend !

num_message = 0;

if(rank_source != -1 && number_receive>0) {

MPI_Irecv(receive_info ,number_receive,

MPI_DOUBLE,rank_source,26,comm,

&req[num_message]);

++num_message;

}

if(rank_destination != -1 && number_send>0) {

MPI_Isend(send_info,number_send,

MPI_DOUBLE,rank_destination,26,comm,

&req[num_message]);

++num_message;

}

MPI_Waitall(num_message,req,status);

– p. 174/249

Two Sending Approaches

1. Approach

Send(E); Send(W); Send(N); Send(S);

Send(NE); Send(NW); Send(SE); Send(SW);

Waitall();

2. Approach

Send(E); Send(W);

Waitall();

Send_(N); Send_(S);

Waitall();

This approach updates data also from NE,NW,... , if Send also
sends the updated data from processor E,W.

– p. 175/249

Sending for 4 Color Gauss-Seidel

NE point

SE point

NW point

SW point

NENNW

W

SW S SE

EM

– p. 176/249

Point Partitioning

P1

P2 P3

P4

point approach

Ωh = {(ih, jh) | i, j = 0, ..., N},

where h = 1
N and H = 1√

p

N =
√
pn, n,N ∈ N. Define

Ω̄k,s = [Hk,H(k + 1)]× [Hs,H(s+ 1)]

Ω̂k,s = [Hk,H(k + 1)[×[Hs,H(s+ 1)[

Ωk,s
h = Ωh ∩

(

Ω̄k,s\
⋃

(k′,s′) 6=(k,s) Ω̂
k′,s′
)

. Then,

Ωh =
⋃

√
p−1

k,s=0 Ω
k,s
h .

– p. 177/249

Load Balancing

P2

P1

P3

P4

Ωh = {(ih, jh) | i, j = 0, ..., N − 1},

where h = 1
N . Let p = p1p2.

Make a partitioning with
p1 processors in x-direction and
p2 processors in y-direction .

Same load balancing for every processor.

Dsend = 2N
p1

+ 2N
p2

= 2N(1
p1

+ 1
p2
) data to be sent.

– p. 178/249

MPI with Expression Templates

Let us consider the cg iteration:

r = A * u - f;

d = -r;

delta = product(r,r);

for(i=1;i<=iteration && delta > eps;++i) {

g = A* d;

tau = delta / product(d,g);

r = r + tau * g;

u = u + tau * d;

delta_prime = product(r,r);

beta = delta_prime / delta;

delta = delta_prime;

d = beta * d - r;

}

When is an update of ghost values needed?

– p. 179/249

MPI with Expression Templates

enum Update_typ { no_update, update };

class vector : public Expr<vector> {

public:

vector(int l) { update_var = no_update; };

Update_typ expression_update_typ() const {

return update_var; };

private:

Update_typ update_var;

int id;

... };

Update_typ DExprSum::expression_update_typ() const {

return a_.expression_update_typ() ||

b_.expression_update_typ() };

Update_typ DExprLaplace_FD::expression_update_typ() c onst {

return update; };

– p. 180/249

MPI with Expression Templates

class Update_handler;

template <class A>

void vector::operator=(const Expr<A>& a) {

if((˜a).expression_update_typ()) {

Update_handler handler_update;

(˜a).Give_update_data(handler_update);

handler_update.Make_update();

}

for(int i=0;i<lenghth;++i) {

p[i] = (˜a).[i];

}

}

– p. 181/249

Raytracing

Raytracing is used in

Computer graphics: How does light look at an image
plane?

Simulation of light in engineering applications: How is
ight absorded in a medium (example: laser crystal).

The main idea of ray tracing is that light is modeled by
several rays of light.

– p. 182/249

Forward and Backward Raytracing

Forward Raytracing: Light propagates from a light
source in several directions until either vanishes by
absorpion or it impings at the image plane or leaves out
of the computational domain.

Backward Raytracing: Find the rays which imping at the
image plane by back tracing rays beginning from all
points of the image plane in all possible directions.

– p. 183/249

Concept of Forward Raytracing

A ray starts at a point P and propagates in direction ~d with
intensity I. The path of the ray can be described by

P + λ~d, λ ∈ R

The following situations can happen:

The ray propagates out of the computational domain.

The ray impings at an object and vanishes.

The ray impings at an objects and is reflected in one or
more directions.

The ray progagates from a medium A to medium B with
different refraction indices.

Light of the ray is absorbed while propagating through a
medium.

– p. 184/249

Ray out of the Computational Domain

computational

P

domain

~d

– p. 185/249

Ray Impings on Object

P

– p. 186/249

Perfect Specular Reflection

P

αin

αout

In case of perfect specular reflection, there is only one
reflected ray which satisfies:

αin = αout.

– p. 187/249

Perfect Diffuse Reflection

The Lambert refection describes a diffusive reflection of
light by several rays:

P

– p. 188/249

Perfect Specular Transmission

P

αt

iαin

na

nb

Perfect specular transmission satisfies Snell’s law:

αin · nA = αt · nB.

– p. 189/249

Perfect Diffusive Transmission

P

– p. 190/249

General Situation

P

αt

ain

nA

nB

– p. 191/249

Light Sources

There exist different kind of light sources:

point light source

multimode light source

Gaussian beam light of low oder (not multimode).
→ This kind of light cannot be modeled by ray tracing.

– p. 192/249

Point Light Sources

P
P

one direction several directions

– p. 193/249

Multimode Light Sources

Set of rays starting at points Pi, i = 1, ..., n to every direction
with angle φ between −α and α:

P1

Pi

Pn

α

The numerical aperture NA is defined by:
NA = nr · sin(α), where nr refraction index of the medium.
Example: Light of multimode fiber.

– p. 194/249

Discretization of Light Source

Assume that a light source consists of an infinite number of
rays starting at points Pi ∈ Ωsource in directions ~di ∈ ΦPi

.
Assume that the intensity of the light source is constant
close to the light source.
To discretize the light source, we approximate the light
source by a finite number of rays:

N rays starting at Pi in direction ~di,
where i = 1, ..., N .

If the total power of the light source is I, then the power of
each discretized ray is I/N .
Often, the starting points Pi and the directions ~di can be
chosen by random numbers.

– p. 195/249

Random Numbers

Assume that Pi ∈ Ωsource ⊂ [ax, bx]× [ay, by] and
~di ∈ ΦPi

= [aφ, bφ].

Then, random values for Pi and the directions ~di can be
constructed by a random number generator for an interval
[a, b].

– p. 196/249

Absorption of Light

Assume that light propagates through absorbing medium.

P

A
B

cell

Discretize absorbing medium by cells of meshsize h. The
power of light absorbed in a cell is:

Pabs(cell) = P (A)(1− exp(−αAB)).

– p. 197/249

ODE’s

Let us assume that the ODE

y′(t) = f(t, y(t)), t ≥ t0

y(t0) = y0

is given, where y : [t0,∞[→ Rn.
To discretize this ODE, let τ > 0 be a time step.
Let us denote yi the approximation of y(ti), where ti := τi+ t0.
Types of solvers:

simplest method: Euler method

Runge Kutta methods (one step method)

multi-step methods

implicit, explicit methods

– p. 198/249

Examples

explicit Euler: yi+1 = yi + τf(ti, yi).

implicit Euler: yi+1 = yi + τf(ti+1, yi+1).

classical Runge Kutta method

k1 = τf(xi, yi)

k2 = τf(xi + 1/2τ, yi + 1/2k1)

k3 = τf(xi + 1/2τ, yi + 1/2k2)

k4 = τf(xi + τ, yi + k3)

yi+1 = yi + 1/6k1 + 1/3k2 + 1/3k3 + 1/6k4.

Simpson’s method:

yi+1 − yi−1 =
τ

3
(f(ti+1, yi+1) + 4f(ti, yi) + f(ti−1, yi−1)).

Middle point method: yi+1 − yi−1 = 2τf(ti, yi).

– p. 199/249

Stability of a Multi-Step Method

To analyze the stability of a multi-step method of length s,
consider the ODE

y′ = 0, y(0) = y0.

Assume that the multi-step method leads to the recursion
formula

s
∑

i=0

aiyi+j = 0 ∀j ∈ N0.

for this ODE.

– p. 200/249

Stability of a Multi-Step Method

Definition 3. The multi-step method is stable, if for all start values
y0, ...ys−1, the sequence yi is bounded.

Theorem 3. A multi-step method is stable if all roots of the polynomial

s
∑

i=0

aiz
i

are simple roots and contained in the disc

{z ∈ C | |z| ≤ 1}.

(A more general stability theorem is given in Stoer/Burlisch, Einführung in
die Numerische Mathematik II).

– p. 201/249

Stiff ODE’s

Let us linearize f(y, t′) at a certain point t̂, ŷ by Taylor series
in y direction:

f(ŷ, t̂) ≈ b+ A(y − ŷ).

The ODE is a stiff ODE, if A has negative eigenvalues of
different size.

Definition 4. The ODE solver is a stable ODE solver for stiff equation
systems, if

lim
i→∞

yi = 0 ∀τ > 0 and yi > 0 ∀τ > 0, i ∈ N

for the ODE

y′ = λy, y(0) = 1,

where λ < 0.

– p. 202/249

Analysis of ODE Solvers

Apply a given ODE solver to the ODE

y′ = λy, y(0) = 1.

Often this leads to an iteration formula of the form

yi+1 = yig(λτ).

Then, stability means

|g(z)| < 1 ∀Re(z) < 0.

– p. 203/249

Examples

explicit Euler: (not stable for stiff ODE’s)

yi+1 = yi + hf(ti, yi)

implicit Euler: (stable for stiff ODE’s)

yi+1 = yi + hf(ti+1, yi+1).

– p. 204/249

Parabolic PDE

Let Ω ⊂ Rd be a domain.
The standard parabolic PDE is:

∂u

∂t
= α2△u+ f(t, ~x), ~x ∈ Ω, t ≥ t0,

u(t0, ~x) = u0(~x), ~x ∈ Ω, initial condition
u(t, ~x) = g(t, ~x), ~x ∈ ∂Ω, t ≥ t0, boundary condition

where, g, f, u0 are given functions.

– p. 205/249

Discretization of a Parabolic PDE

Let Ω̄h ⊂ Ω̄ be a discretization grid.
Let Ωh = Ω̄h ∩ Ω.

ti := τi+ t0.

Let us denote ūh(ti, ~xh), i ∈ N0, ~xh ∈ Ωh

the approximate solution.
Furthermore, let us abbreviate uh(ti) = (ūh(ti, ~xh))~xh∈Ωh

.

Let us discretize △w by

L̄hwh,

where L̄h is a |Ωh| × |Ω̄h| matrix and wh ∈ R
|Ωh|.

(e.g. finite difference discretization).

In case of homogeneous boundary conditions (g = 0)
L̄h can be replaced by the |Ωh| × |Ωh| matrix Lh.

– p. 206/249

Discretization of a Parabolic PDE

uh(t0, ~xh) = u0(~xh) ~xh ∈ Ω̄h

uh(ti, ~xh) = g(ti, ~xh) ~xh ∈ Ω̄h\Ωh, i ∈ N0.

forward difference method (explicit Euler)

ūh(ti+1) = ūh(ti) + τ
(

α2L̄hūh(ti) + fh(ti)
)

.

backward difference method (implicit Euler)

ūh(ti+1) = ūh(ti) + τ
(

α2L̄hūh(ti+1) + fh(ti+1)
)

.

Crank-Nicolson

ūh(ti+1) = ūh(ti) + τ
1

2

(

α2L̄hūh(ti) + fh(ti) +

α2L̄hūh(ti+1) + fh(ti+1)
)

.

– p. 207/249

Fourier Stability Analysis

To analyze the stability of the previous discretization, let us consider

∂u

∂t
= α2△u, ~x ∈ Ω, t ≥ t0,

u(t0, ~x) = u0(~x), ~x ∈ Ω, initial condition

u(t, ~x) = 0, ~x ∈ ∂Ω, t ≥ t0, boundary condition

Ω :=]0, π[2.

The exact solution of this PDE is

u(t, (x, y)) =
∞
∑

ν,µ=0

aν,µ sin(νx) sin(µy) e−α2(ν2+µ2)(t−t0), where

u0(x, y) =

∞
∑

ν,µ=0

aν,µ sin(νx) sin(µy).

Observe that u(t, (x, y)) ≥ 0, if aν,µ ≥ 0∀ν, µ.

– p. 208/249

Fourier Stability Analysis

Let Ωh := {h(i, j) | i, j = 1,m− 1} be the discretization grid.
Lemma 1. Lh has the eigenvectors

eν,µ =
(

sin(νπxi) sin(µπyj)
)

(xi,yj)∈Ωh

, where ν, µ = 1, · · · ,m−1,

with eigenvalues

λν,µ = − 4

h2

(

sin2
(

πνh

2

)

+ sin2
(

πµh

2

))

.

The eigenvalues can be estimated by

8

h2
> −λν,µ > 2π2.

– p. 209/249

Fourier Stability Analysis

The functions (eν,µ)ν,µ=1,...,m−1 form a basis of R|Ωh|. Thus
we can write

u0 =

m−1
∑

ν,µ=1

cν,µ(t0)eν,µ.

Definition 5. The discretization of the parabolic equation is stable, if the
following condition holds:
Let the coefficients cν,µ(t0) be nonnegative.
Then, the coefficients of the approximate solution for f = 0, g = 0 are
nonnegative

cν,µ(t) ≥ 0 ∀ν, µ, t > t0.

– p. 210/249

Analysis of Forward Difference Method

The Fourier analysis of the forward difference method

uh(ti+1) = uh(ti) + τ(α2Lhuh(ti) + fh(ti)).

leads to the explicit Euler formula (f = 0, g = 0):

cν,µ(ti+1) = (1 + τα2λν,µ)cν,µ(ti).

Stability is obtained if |1 + τα2λν,µ| < 1 and therefore

τ <
2

α2|λν,µ|
.

Thus the condition

τ <
2

α2 8
h2

=
2h2

8α2

is sufficient for the stability of the forward difference

– p. 211/249

Analysis of Backward Difference Method

The analysis of the backward difference method

uh(ti+1) = uh(ti) + τ
(

α2Lhuh(ti+1) + fh(ti+)
)

.

leads to the implicit Euler formula (f = 0, g = 0):

cν,µ(ti+1) = cν,µ(ti)
1

1− τα2λν,µ

.

Stability is obtained independent of τ since

0 <
1

1− τα2λν,µ

< 1.

– p. 212/249

Analysis of Crank-Nicolson

The analysis of Crank-Nicolson

uh(ti+1) = uh(ti) + τ
1

2

(

α2L̄huh(ti) + fh(ti) +

α2L̄huh(ti+1) + fh(ti+1)
)

leads to the formula (f = 0, g = 0):

cν,µ(ti+1) = cν,µ(ti)
1 + 1

2τα
2λν,µ

1− 1
2τα

2λν,µ

.

Stability is obtained independent of τ since

∣

∣

∣

∣

1 + 1
2τα

2λν,µ

1− 1
2τα

2λν,µ

∣

∣

∣

∣

< 1.

But for large |α2λν,µ|:
∣

∣

∣

1+ 1

2
τα2λν,µ

1− 1

2
τα2λν,µ

∣

∣

∣
→ 1.

– p. 213/249

Hyperbolic PDE

Let Ω ⊂ Rd be a domain.
The standard hyperbolic PDE is:

∂2u

∂t2
= α2△u+ f(t, ~x), ~x ∈ Ω, t ≥ t0,

u(t0, ~x) = u0(~x), ~x ∈ Ω, 1. initial condition
∂u

∂t
(t0, ~x) = u1(~x), ~x ∈ Ω, 2. initial condition

u(t, ~x) = g(t, ~x), ~x ∈ ∂Ω, t ≥ t0, boundary condition

where, g, f, u0, u1 are given functions.

– p. 214/249

Discretization of a Hyperbolic PDE

Let Ω̄h ⊂ Ω̄ be a discretization grid.
Let Ω̄h = Ωh ∩ Ω.

ti := τi+ t0.

Let us denote ūh(ti, ~xh), i ∈ N0, ~xh ∈ Ωh

the approximate solution.
Furthermore, let us abbreviate uh(ti) = (ūh(ti, ~xh))~xh∈Ωh

Let us discretize △w by

L̄hwh,

where L̄h is a |Ωh| × |Ωh| matrix and wh ∈ R
|Ωh|.

(e.g. finite difference discretization).

In case of homogeneous boundary conditions (g = 0)
L̄h can be replaced by the |Ωh| × |Ω̄h| matrix Lh.

– p. 215/249

Discretization of a Hyperbolic PDE

First initial condition and boundary condition:

uh(t0, ~xh) = u0(~xh) ~xh ∈ Ω̄h

uh(ti, ~xh) = g(ti, ~xh) ~xh ∈ Ω̄h\Ωh, i ∈ N0.

Second initial condition:

uh(t1, ~xh) = u0(~xh) + τu1(~xh) +
1

2
τ2α2△u0(~xh).

Discretization of the PDE:

uh(ti+1) = 2uh(ti)− uh(ti−1) + τ2α2
(

L̄huh(ti) + fh(ti)
)

.

– p. 216/249

Fourier Stability Analysis

To analyze the stability of the previous discretizations, let us consider the
case f = 0, g = 0, u1 = 0. Then, the exact solution of this PDE is

u(t, (x, y)) =
∞
∑

ν,µ=0

aν,µ sin(νx) sin(µy) cos
(

α(t− t0)
√

ν2 + µ2
)

, where

u0(x, y) =
∞
∑

ν,µ=0

aν,µ sin(νx) sin(µy).

Observe that

aν,µ sin(νx) sin(µy) cos
(

α(t− t0)
√

ν2 + µ2
)

is bounded for t → ∞.

– p. 217/249

Fourier Stability Analysis

The functions (eν,µ)ν,µ=1,...,m−1 form a basis of R|Ωh|. Thus,
we can write

u0 =

m−1
∑

ν,µ=1

cν,µ(t0)eν,µ.

Definition 6. The discretization of the hyperbolic equation is stable, if
the following condition holds:
Assume that

cν,µ =

{

c 6= 0 for (ν, µ) = (ν ′, µ′)

0 for (ν, µ) 6= (ν ′, µ′)
.

Then, the approximate solution for f = 0, g = 0, u1 = 0 is bounded for
t → ∞.

– p. 218/249

Analysis of the Discretization

The Fourier analysis of the discretization

uh(ti+1) = 2uh(ti)− uh(ti−1) + τ2α2
(

L̄huh(ti) + fh(ti)
)

leads to the formula (f = 0, g = 0, u1 = 0):

cν,µ(ti+1) = (2 + τ2α2λν,µ)cν,µ(ti)− cν,µ(ti−1).

Stability is obtained, if the roots of

z2 − (2 + τ2α2λν,µ)z + 1

are simple and contained in the disc {z ∈ C | |z| ≤ 1}.
This implies the CFL (Courant, Friedrich, Lewy) condition:

τ <
1√
2
h|α|−1.

– p. 219/249

Order of Consistency and Convergence

There are slightly different definitions of consistency for
different types of ODE solvers and types of PDE’s.

There are different definitions for stability.

In numerical analysis one proves:
consistency + stability ⇒ convergence

– p. 220/249

Order of Consistency for Elliptic PDE’s

Definition 7. Let L(u) be a differential operator on Ω and Lh(uh) a
discrete approximation of this operator on the discretization grid Ωh.

Furthermore, let Rh : C(Ω̄) → R|Ωh| be the pointwise restriction
operator. Then, the consistency order of Lh is of order O(hp), if there
exists a constant C > 0 such that

‖Rh(L(u))− Lh(Rh(u))‖ ≤ Chp.

Example 5. Consider the differential operator ∂
∂x .

The consistency order of central differences is O(h2)
and the consistency order of upwind or downwind differences is O(h).

– p. 221/249

Order of Consistency for ODE’s

Definition 8. Let y′ = f(t, y) be an ODE on the domain [t0,∞[.
Let yi → Ψ(yi) = yi+1 be a mapping, which calculates an approximate
solution yi+1 at ti+1 = ti + τ for a given approximation yi at ti.
Then, the consistency error is of order O(τp), if there exists a constant
C > 0 such that

∣

∣τ−1(yex(ti+1)− yi+1)
∣

∣ ≤ Cτp,

where yex is an exact solution of the ODE with initial condition
yex(ti) = yi.

– p. 222/249

Consistency for Parabolic PDE

Definition 9. Let y′ = f(t, y) be a parabolic PDE on the domain
[t0,∞[.
Let yi → Ψ(yi) = yi+1 be a mapping, which calculates an approximate
solution yi+1 at ti+1 = ti + τ for a given approximation yi at ti.
Then, the consistency error is of order O(τp), if there exists a constant
C > 0 such that

∥

∥τ−1(yex(ti+1)− yi+1)
∥

∥ ≤ Cτp,

where yex is an exact solution of the parabolic PDE with initial condition
yex(ti) = yi.

– p. 223/249

Shortly-Weller Discretization

Let Ω ⊂]ax, bx[×]ay, by[= Q be an open bounded domain.

Discretize Q by a structured grid Qh of meshsize h.

Denote Ωh := Qh ∩ Ω the interior points.

The set of regular points is:

Ωr
h := {z ∈ Ωh | z + (h, 0), z + (−h, 0), z + (0, h), z + (0,−h) ∈ Ωh}.

and the set of near boundary points: Ωn
h := Ωh\Ωr

h.

Let the set of boundary points Γh be the set

{(x, y + τ) ∈ ∂Ω | (x, y) ∈ Ωn
h, (x, y + h) 6∈ Ωh,](x, y), (x, y + τ)[⊂ Ω}

∪ {(x, y − τ) ∈ ∂Ω | (x, y) ∈ Ωn
h, (x, y − h) 6∈ Ωh,](x, y), (x, y − τ)[⊂ Ω}

∪ {(x+ τ, y) ∈ ∂Ω | ...} ∪ {(x− τ, y) ∈ ∂Ω | ...}.

– p. 224/249

Shortly-Weller Discretization

For every point M = (x, y) ∈ Ωi
h denote the north point

by

N :=

{

(x, y + τ) if (x, y + h) 6∈ Ωh

(x, y + h) if (x, y + h) ∈ Ωh.

Analogously, define the points N,S,W .

Let the mesh sizes hN , hS , hW , hE be defined such that

N = (x, y + hN), where M = (x, y),

S = (x, y − hS), where M = (x, y),

E = (x+ hE , y), where M = (x, y),

W = (x− hW , y), where M = (x, y).

– p. 225/249

Shortly-Weller Discretization

Let us discretize the equation

−△u = f, u|∂Ω = g

as follows

u(z) = g(z) for all z ∈ Γh.

For every z ∈ Ωi
h let

−△huh(M) =

(

2

hNhS
+

2

hWhE

)

u(M)

− 2

hN (hN + hS)
u(N)− 2

hS(hN + hS)
u(S)

− 2

hW (hW + hE)
u(W)− 2

hE(hW + hE)
u(E).

– p. 226/249

Shortly-Weller Discretization

Theorem 4. In general, the discretization matrix of the
Shortly-Weller discretization is not symmetric.

The order of consistency is:

‖(Rh(L(u))− Lh(Rh(u)))(M)‖ = O(h) ∀M ∈ Ωn
h

‖(Rh(L(u))− Lh(Rh(u)))(M)‖ = O(h2) ∀M ∈ Ωi
h.

If u ∈ C4(Ω̄), then the convergence is of order O(h2):

‖Rh(u)− uh‖∞ = O(h2).

– p. 227/249

Direct Solvers for PDE’s

FD discretization of Poisson’s equation Mx = b,
where M is a matrix of size N = nd, d dimension.

storage time
Gauss elimination N2 = n2d N3 = n3d

Band Gauss elimination Nnd−1 = n2d−1 Nn2(d−1) = n3d−2

at d = 2 n3 n4

at d = 3 n5 n7

Nested dissection d > 2 n2d−2 n3d−3

at d = 2 n2 log n n3

at d = 3 n4 n6

Iterative multigrid nd nd

– p. 228/249

Block Elimination

Let us write Mx = b as
(

A B

C D

)(

t

xco

)

=

(

q

p

)

,

where

M =

(

A B

C D

)

, b =

(

q

p

)

, x =

(

t

xco

)

Here co is an abbreviation for coarse.

– p. 229/249

Block Elimination

The block decomposition leads to

Mco := D − CA−1B

bco := p− CA−1q.

One has to solve

Mcoxco = bco(2)

t = A−1(q − Bxco)(3)

Here co is an abbreviation for coarse.
Equation (2) can be solved recursively or by
Gauss-Elimination.
A−1 has to be calculated by Gauss-Elimination.

– p. 230/249

Block Elimination

Let
{1, 2, ..., N} = A ∪B

Then

R
N = VA ⊕ VB := {v + w | v ∈ VA and w ∈ VB}

where

VA =

{

∑

i∈A
eiλi | λi ∈ R

}

,

VB =

{

∑

i∈B
eiλi | λi ∈ R

}

.

– p. 231/249

Block Elimination

Spaces decomposition: Vk = Wk ⊕ Vk−1.
Then: RN = Wkmax

⊕ ...⊕W1 ⊕ V0

Mk =

(

Ak Bk

Ck Dk

)

where

Ak : Wk → Wk, Bk : Vk−1 → Wk,

Ck : Wk → Vk−1, Dk : Vk−1 → Vk−1,

Mk : Vk → Vk

– p. 232/249

Nested Dissection

0 0 0 0 0 0 0 0 0
0 3 2 3 1 3 2 3 0
0 2 2 2 1 2 2 2 0
0 3 2 3 1 3 2 3 0
0 1 1 1 1 1 1 1 0
0 3 2 3 1 3 2 3 0
0 2 2 2 1 2 2 2 0
0 3 2 3 1 3 2 3 0
0 0 0 0 0 0 0 0 0

Decomposition of discretization grid:

Ωh = Ω0 ∪ Ω1 ∪ Ω2 ∪ Ω3

– p. 233/249

Nested Dissection

Number the finest grid Ωh = {1, 2, ..., N}. Then, decompose:

{1, 2, ..., N} = Ω0 ∪ Ω1 ∪ Ω2 ∪ Ω3

Mk =

(

Ak Bk

Ck Dk

)

, xk =

(

tk
xk−1

)

, bk =

(

qk
pk

)

.

Mk−1 := Dk − CkA
−1
k Bk

bk−1 := pk − CKA−1
k qk.

Mk−1xk−1 = bk−1

tk = A−1
k (qk − Bkxk−1)

M−1
0 and A−1

k have to be calculated by Gauss-Elimination.

– p. 234/249

Nested Dissection

The computational amount of nested dissection is
dominated by computation of M−1

0 and A−1
k . Let us estimate

this this computational amount:
Let n = 2kmax.

M0

is matrix of size O(2(d−1)kmax) = O(nd−1).
M−1

0 computation:
O(n2d−2) storage requirement.
O(n3d−3) computational requirement.

– p. 235/249

Nested Dissection

Let n = 2kmax.
Ak

has a block-structure and consists of

2d(k−1)

blocks of size O(2(d−1)(kmax−k)).
Storage requirement for A−1

k computation:

O(

kmax
∑

k=0

2d(k−1)(2(d−1)(kmax−k))2) = O(N

kmax
∑

k=0

2(d−2)k)

= O(Nkmax) = O(n2 log(n)) if d = 2

= O(N2(d−2)kmax) = O(n2d−2) if d > 2

– p. 236/249

Nested Dissection

Let n = 2kmax.
Ak

has a block-structure and consists of

2d(k−1)

blocks of size O(2(d−1)(kmax−k)).
Computational requirement for A−1

k computation:

O(

kmax
∑

k=0

2d(k−1)(2(d−1)(kmax−k))3) = O(N

kmax
∑

k=0

2(2d−3)k)

= O(n3d−3)

– p. 237/249

Implementation of Nested Dissection

Implementation has to take into account that all matrices
are block matrices.
→ recursive implementation is needed.
For reasons of simplicity assume d = 2, Ω = [0, 1]2.
Define the cells (Zelle)

Zk
i,j = [ihk, jhk]× [(i+ 1)hk, (j + 1)hk],

where hk = 2−k and

I = (i, j) ∈ Ik := {(i, j) | i, j = 0, ..., 2k − 1}.

Observe that Z0
0,0 = [0, 1]2 and

Zk
i,j = Zk+1

i,j ∪ Zk+1
i+1,j ∪ Zk+1

i,j+1 ∪ Zk+1
i+1,j+1.

– p. 238/249

Implementation of Nested Dissection

Define

Akmax

i,j := Zkmax

i,j ∩ Ωh

Bk
i,j := Ak

i,j ∩ ∂Zk
i,j

Ik
i,j := Ak

i,j\Bk
i,j

Ak−1
i,j := Bk

i,j ∪ Bk
i+1,j ∪ Bk

i,j+1 ∪ Bk
i+1,j+1 for k ≤ kmax.

Furthermore, we can define

Ω0 := B0
0,0

Ωk := Ik−1
i,j .

– p. 239/249

Implementation of Nested Dissection

Let
V (B) := span{ei | i ∈ B}

Then define matrices, which map spaces to spaces:

Ak
I : V (Ik

I) → V (Ik
I), Bk

I : V (Bk
I) → V (Ik

I),

Ck
I : V (Ik

I) → V (Bk
I), Dk

I : V (Bk
I) → V (Bk

I),

Mk
I : V (Ak

I) → V (Ak
I)

These matrices are stored with respect to the standard
basis {ei}. Extend matrix M : V (B) → V (A) according

M(ei) :=

{

M(ei) if ei ∈ V (B)

0 else.

– p. 240/249

Implementation of Nested Dissection

Mk−1
i,j :=

∑

I=i,j,...,i+1,j+1

Dk
I − Ck

I (A
k
I)

−1Bk
I

bk−1
i,j :=

∑

I=i,j,...,i+1,j+1

pkI − CK
I (Ak

I)
−1qkI .

tkI = (Ak
I)

−1(qkI − Bk
I x

k−1
I)

On coarsest grid one has to solve exactly

M0x0 = b0

Equation
Mk−1xk−1 = bk−1

has to be solved recurively from coarse to fine grid.
– p. 241/249

Implementation of Nested Dissection

How to define
Mkmax

i,j ???

In case of Finite Elements, these are the local stiffness
matrices.

In case of Poisson’s equation take the 4x4 matrix

1

h2

1 −0.5 0 −0.5

−0.5 1 −0.5 0

0 −0.5 1 −0.5

−0.5 0 −0.5 1

– p. 242/249

Lineare Algebra with Indizes

class VectorIndex : public ExprAlg<VectorIndex> {

public:

template <class Ind> VectorIndex(const Ind& index) {

size = index.getSize(); Sn = index.getIndices();

data = new double[size];

s = new int; Smy = new int;

}

template <class A> void operator=(const ExprAlg<A>& a);

...

private:

double * data;

int size; // Laenge Vektor

int * Sn; // Nummern der globalen Indizes

int * Smy; // fuer Auswertung: globaler Index

int * s; // fuer Auswertung: lokaler Index };

– p. 243/249

Lineare Algebra with Indizes

void VectorIndex::startI(int max_size) const {

(* s) = 0; if(size>0) (* Smy) = Sn[(* s)];

}

double VectorIndex::getValueI(int Sglobal) const {

while(Sglobal > (* Smy) && (* s) < size) {

++(* s); (* Smy) = Sn[(* s)]; }

if((* Smy) > Sglobal || (* s)>=size) return 0;

return data[(* s)];

}

template <class A>

void VectorIndex::operator=(const ExprAlg<A>& a) {

const A& ao(a); ao.startI(size);

for(int ss = 0;ss < size;++ss) {

data[ss] = ao.getValueI(Sn[ss]); }

} // ----> sorted Indizes!!!

– p. 244/249

Lineare Algebra with Indizes

Implementation of matrices with Indizes:
class MatrixIndex : public ExprAlg<...> {

public:

template <class Ind>

MatrixIndex(const Ind& indexI,const Ind& indexJ);

....

}

Operators like =,+,- are implemented such that they can be
applied to vectors and matrices with respect to different
index set:

v = b+ c

Here iteration is performed for the index set A of v.
If b or c is not defined at a certain index i ∈ A, then
getValueI(i) return 0.0.

– p. 245/249

Lineare Algebra with Indizes

Observe that if v is defined for a index set A.
Then v is contained in the corresponding vector space:

v ∈ V (A)

A class IndexSet is needed which
stores indizes in a sequential order and
allows union of two index set by merge sort.

– p. 246/249

Implementation of Nested Dissection

The sets
Ak

I = Bk
I ∪ Ik

I

have to be represented by objects of class IndexSet
and constructed recurively.
The matrices

Ak
I : V (Ik

I) → V (Ik
I), Bk

I : V (Bk
I) → V (Ik

I),

Ck
I : V (Ik

I) → V (Bk
I), Dk

I : V (Bk
I) → V (Bk

I),

Mk
I : V (Ak

I) → V (Ak
I)

have to be represented by objects of class MatrixIndex
and constructed recurively.

– p. 247/249

Implementation of Nested Dissection

The sets Ak
I ,Bk

I , Ik
I and matrices Ak

I , B
k
I , C

k
I , D

k
I , and Mk

I

have to be stored as members of leaves in an quadtree.
class Leaf {

public:
Leaf(...); ...
VectorIndex * x; ///> W
...
MatrixIndex * A; ///> W -> W
MatrixIndex * B; ///> Vb -> W
...

private:
std::vector<Leaf * > children;
IndexVector allIndizes; ///> set A
IndexVector interiorIndizes; ///> set I
IndexVector boundaryIndizes; ///> set B

};
– p. 248/249

Implementation of Nested Dissection

Dested Dissection has to be implemented by traversing
through a quadtree with leaves of obeject class Leaf .

Efficiency mainly depends on the efficient
implementation of

matrix multiplication and
Gauss-algorithm implementation to compute A−1.

using a lineare algebra library on index sets. To this end
cache efficient implementation is very important!

– p. 249/249

	Content of the Lecture
	Simulation in Fluid Dynamics
	Simulation in Fluid Dynamics
	Simulation in Fluid Dynamics
	Problems in Computer Architecture
	Latency and Bandwidth
	Fundamental Architecture of a Computer
	Pipeline Concept of a Processor
	Pipeline Concept of a Processor
	Bypassing
	Fusion of Multiply and Add
	Parallel Computations in a Processor
	Stalls of Pipeline-Processes
	Access Time of Data
	Cache Sizes
	Blocks in Memories
	Example: Intel 'Nehalem' Architektur
	Example: Itanium 2
	Example: IBM Power 3
	Cache Misses
	Common Subexpression Elimination
	Loop-Invariant Code Motion
	Evaluation of Constants
	Strength Reduction
	Instruction Scheduling
	Performance Optimization: Mult-Add
	Eliminating Overheads
	Loop Unrolling
	Loop Unrolling
	Instruction-Parallelization
	Pentium 4 - Vectorization
	Pentium 4 - Vectorization
	Pentium 4 - Vectorization
	Improvement of Memory Access
	Automatic Loop Unrolling
	Limit of Loop Unrolling
	Optimization of Memory Access
	Example in FORTRAN
	Example in C
	Dynamic Memory Allocation C++
	Efficient Dynamic Memory Allocation
	Loop Fusion
	Data Layout
	Blocking
	Automatic Optimization
	Keyword {	t restrict}
	Shared Memory Computer Architecture
	Parallelization with OpenMP
	Parallelization with OpenMP
	Usage of restrict with OpenMP
	{	t private } Construction in OpenMP
	{	t private } Construction in OpenMP
	{	t private } Construction in OpenMP
	Bad Parallelization with OpenMP
	Bad Parallelization with OpenMP
	Euclidian Norm
	{	t reduction } Construction in OpenMP
	{	t reduction } Construction in OpenMP
	Not Parallelizable Loops
	Not Parallelizable Relaxation Loop
	Parallelizable Relaxation Loop
	{	t Inlining} Construction in C++
	{	t const} Construction in C++
	Meta-Programming in C++
	Factorial by Meta-Programming
	Meta-Programming
	Insulation Property of a Wall
	Simple Mathematical Model
	Model Problem
	Discretization Grid of Finite Differences
	Finite Difference Discretization
	Finite Element (FE)
Norms
	Suitable Norms for FD
	Suitable Norms for FD
	Convergence of the FD Method
	Numerical Result
	How to Choose the Meshsize h
	Eigenvectors and Eigenvalues of L_h
	Eigenvectors and Eigenvalues of L_h
	Direct and Iterative Solvers
	Discretization Error and Algebraic Error
	Discretization Error and Algebraic Error
	Direct Solvers for Linear Equation Systems
	Direct Solvers for FD Discretization
	Iterative Solvers
	Relaxation
	Numbering of GS Relaxation
	Gradient Method
	cg Iteration
	Estimation of the Algebraic Error
	Estimation of the Algebraic Error for Tests
	A Hard Approach
	Estimation of Algebraic Error by Residuum
	Estimation of Algebraic Error by Residuum
	Property of Iterative Solvers
	Algebraic Error of an Iterative Solver
	Estimation of the Convergence
	Convergence Rate of Linear Iterative Solvers
	Estimation of the Convergence
	Meshsize and Iteration Number
	Is there a Bug in the Code or not?
	Debugging with gdb
	Apply intelligent print statements!
	Finding a Bug in a Radio
	Finding a Bug in a Radio
	Finding a Bug in a Radio
	Finding a Bug in a Radio
	Hierarchical Search of Bug
	Reduction of the Problem
	Memory check by valgrind
	Warnings in an HPC code
	Warnings in an HPC code
	Avoid $==$ Sign
	Avoid {	t double} Comparison
	Mathematical Error or Bug in the Code?
	Test Frame for Module Test
	Integration and Regression Test
	Finding Test Functions
	Test Parameters
	Test Part of the PDE
	Test Convergence
	Test of an Unstructured Grid Code
	Test of an Unstructured Grid Code
	General Software Development
	Implement and Test
	Types of Modules
	Problems in PDE Software Development
	Operator Overloading for Vector Class
	Operator Overloading for Small Vectors
	Vector Class for Long Vectors
	Realization of an Efficient Operator+
	Expression Template - Wrapper Class
	Expression Template - Operator +
	Properties of Expression
	Expression Tree
	First Simplification
	Second Simplification
	Second Simplification
	cg with Expression Templates
	Automatic Parallelization
	Automatic Parallelization
	Remark on Efficiency
	Expression Templates for Vectors
	Expression Templates on Structured Grids
	Expression Templates on Structured Grids
	Expression Templates on Structured Grids
	A Suitable Interface for PDE's
	A Suitable Interface for PDE's
	Geometric Objects - Algebraic Objects!
	Discretization Grid - Subgrids!
	Algebraic Vectors on a Grid
	Poisson with Dirichlet Boundary Conditions
	Parallelization Concepts
	MPI - Message Passing Interface
	MPI - Message Passing Interface
	First MPI - Functions
	MPI_Bcast and MPI_Reduce
	Example Numerical Integration
	Send and Receive with Blocking
	Example for Send and Receive
	Improvement by MPI_ANY...
	Send and Receive without Blocking
	Error Handlers
	Error Handler {	t MPI_ERRORS_RETURN}
	Test Incoming Message
	Debugging
	Parallelization of PDE-Solvers
	Optimal Partitioning for Relaxation Methods
	Cell Partitioning
	Cell Partitioning
	Update of Data for Jacobi Iteration
	Example Code
	Two Sending Approaches
	Sending for 4 Color Gauss-Seidel
	Point Partitioning
	Load Balancing
	MPI with Expression Templates
	MPI with Expression Templates
	MPI with Expression Templates
	Raytracing
	Forward and Backward Raytracing
	Concept of Forward Raytracing
	Ray out of the Computational Domain
	Ray Impings on Object
	Perfect Specular Reflection
	Perfect Diffuse Reflection
	Perfect Specular Transmission
	Perfect Diffusive Transmission
	General Situation
	Light Sources
	Point Light Sources
	Multimode Light Sources
	Discretization of Light Source
	Random Numbers
	Absorption of Light
	ODE's
	Examples
	Stability of a Multi-Step Method
	Stability of a Multi-Step Method
	Stiff ODE's
	Analysis of ODE Solvers
	Examples
	Parabolic PDE
	Discretization of a Parabolic PDE
	Discretization of a Parabolic PDE
	Fourier Stability Analysis
	Fourier Stability Analysis
	Fourier Stability Analysis
	Analysis of Forward Difference Method
	Analysis of Backward Difference Method
	Analysis of Crank-Nicolson
	Hyperbolic PDE
	Discretization of a Hyperbolic PDE
	Discretization of a Hyperbolic PDE
	Fourier Stability Analysis
	Fourier Stability Analysis
	Analysis of the Discretization
	Order of Consistency and Convergence
	Order of Consistency for Elliptic PDE's
	Order of Consistency for ODE's
	Consistency for Parabolic PDE
	Shortly-Weller Discretization
	Shortly-Weller Discretization
	Shortly-Weller Discretization
	Shortly-Weller Discretization
	Direct Solvers for PDE's
	Block Elimination
	Block Elimination
	Block Elimination
	Block Elimination
	Nested Dissection
	Nested Dissection
	Nested Dissection
	Nested Dissection
	Nested Dissection
	Implementation of Nested Dissection
	Implementation of Nested Dissection
	Implementation of Nested Dissection
	Implementation of Nested Dissection
	Implementation of Nested Dissection
	Lineare Algebra with Indizes
	Lineare Algebra with Indizes
	Lineare Algebra with Indizes
	Lineare Algebra with Indizes
	Implementation of Nested Dissection
	Implementation of Nested Dissection
	Implementation of Nested Dissection

